Geometry Test chapters 3-4

Geometry Test Chapters 3 and 4                            Name ____________________________________ 1.  __________________ angles are angles with measures that add to equal 90. 2.  Vertical angles are a pair of _____________________ angles formed by two intersecting lines. 3.  In the figure below  FOG and  GOH are complementary.  If m FOG = 2X + 10 and m GOH = 2X, find X.       4. Use the definition of an angle bisector to answer the question below: If PQ bisects  SPF, and if m SPQ = 3X – 2, and m QPF = 2X + 9 then find m SPF.  Is  SPF acute, right or obtuse?       From each statement below, tell the definition, property, postulate, or theorem that justifies the prove statement: 5.  Given m PST + m LQR = 90 and m DEF = m LQR: Prove: m PST+ m DEF = 90     6.  Given : 1 and  2 are supplements of  3; Prove 1 =  2     Tell whether each of the angles below is adjacent.  If a pair is not adjacent, briefly tell why not. 7.  TPU and UOV   8.  UOV and VOW   9.  Find the measure of all the angles  JOK   JOM   LOM   KOL   10.  Find the measure of  HKL below             Find the measures of the complement and supplement of each angle below: 11.  mUHJ = 21 Complement = Supplement =     12.  m LPW = 90-2x Complement Supplement     13.  Match the angles: ____  adjacent angles  ____vertical angles ____alternate interior angles  ____alternate exterior angles  ____corresponding angles ____supplementary angles   Find the measure of each angle below 14.  LNO       15.  KLN         Write and equation to represent each question; then solve the equation to get your answer. 16.  A supplement of an angle is twice as large as the angle.  Find the measure of the angle.       17.  The difference between the measures of 2 supplementary angles is 42.  Find both angles.        Tell whether each definition below passes the reversibility test by writing its converse and determining whether the converse is true. 18.  If two angles are a linear pair, then the sum of their measures is 180.   19.  Parallel lines are lines that lie in the same plane and never intersect.     From each given statement below, tell the definition, property, postulate, or theorem that justifies each prove statement:  20.  Given AB is parallel to CD; prove  3 and 6 are supplementary   21.  Given  3 =   5; prove AB is parallel to CD   Complete each sentence with always, sometimes, or never  22.  Corresponding angles are ____________________ congruent.   23.  If two parallel lines are cut by a transversal, interior angles on the same side of the transversal are ___________________ supplementary.  BONUS BONUS BONUS BONUS BONUS BONUS EXTRA CREDIT - one point for each blank filled in correctly.  Complete the proof below by filling in the blanks:   Given: DE   EF   DFE is complementary to   DEG Prove:  DF   GH   Statements                                                                        Reasons: 1.  DE EF                                                                            1.  2.                                                                                       2. Given 3.                                                                                      3.  Definition of a right angle. 4.  m DEG + mDEF + m FEH = 180                              4.  A straight angle measures 180 5.  m DEG + 90 + m FEH = 180                                      5. 6. m DEG + mFEH = 90                                                   6. 7.                                                                                            7.Definition of complementary angles 8.  FEH = DFE                                                                      8. 9.                                                                                            9.  If two lines form congruent alternate interior               angles with a transversal, then the lines are    parallel