Punti, rette e circonferenze fisse
Punti fissi
I punti fissi sono quei punti che tramite la trasformazione vengono mandati in se stessi.
Per trovare i punti fissi di una rotazione dobbiamo risolvere il seguente sistema in cui imponiamo che le coordinate del punto di partenza coincidano con quelle del punto trasformato:
Come abbiamo notato in precedenza se la rotazione è l'identità e tutti i punti sono punti fissi, infatti inserendo il valore nelle equazioni sopra troviamo:
Da cui
Quindi il sistema è soddisfatto per ogni punto. Sia ora , riscriviamo il sistema:
Poichè , abbiamo che , quindi possiamo dividere per :
Con le opportune sostituzioni otteniamo:
Svolgendo la seconda equazione del sistema troviamo:
Dall'identità fondamentale della trigonometria sappiamo che quindi l'equazione diventa:
Vogliamo che il prodotto sia zero quindi uno dei due fattori deve essere nullo, quindi , quindi deve essere da cui . Inserendo quanto appena ottenuto nella prima equazione del sistema si ottiene da cui . Possiamo quindi concludere che per l'unico punto fisso di una rotazione è il punto , cioè il centro.
Rette fisse
Una retta fissa è una retta in cui punti vengono mandati mediante la trasformazione in punti ancora appartenenti alla retta, una retta di punti fissi è una retta i cui punti vengono tutti mandati in se stessi.
Come abbiamo appena visto l'unico punto fisso delle rotazioni è il centro quindi in generale non abbiamo rette fisse né rette di punti fissi.
Ora tocca a te!
In alcune situazioni particolari è possibile individuare delle rette che vengono mandate in se stesse.
Osserva la figura sotto, modifica a tuo piacimento l'angolo di rotazione e osserva che la retta s, passante per il centro, per alcuni valori di α viene mandata in se stessa.
C'è un valore di α che manda la retta s in se stessa?
Circonferenze fisse
Abbiamo visto che la rotazione mantiene costante la distanza dal centro di rotazione di ogni punto trasformato.
Per definizione la circonferenza è il luogo dei punti del piano equidistanti da un punto detto centro, quindi se consideriamo una circonferenza con centro C1 coincidente con il centro di rotazione C applicando la rotazione la circonferenza viene mandata in se stessa.
Ora tocca a te!
Una circonferenza è detta di punti uniti se ogni punto è mandato in se stesso. Prendiamo una circonferenza con centro coincidente con il centro di rotazione, quanto deve valere l'angolo di rotazione α affinché la circonferenza sia una circonferenza di punti uniti? Non considerare l'angolo nullo.