X(87) Isogonal conjugate of X(43)
isogonal conjugate of X(43)
X43, triangle center X(43) is the X(6) Ceva conjugate of X(1). This means that P, the X(6)-Ceva conjugate of X(1) is given by the perspector of the Cevian triangle of X(6) and the anticevian triangle of X(1).
The isogonal conjugate of X43, triangle center X(43) can be constructed as follows:
- Reflect the lines AX43, BX43, CX43 about the bisectors of the triangle ABC (=blue lines)
- These blue lines cross at the triangle center X(87). The barycentric coordinates of this point depend on the lenghts of the triangle.
isogonale tiegevoegde van X(43)
X43 ,driehoekscentrum X(43) is de X(6) toegevoegde van X(1).
X(1) is het middelpunt van de ingeschreven cirkel van de driehoek ABC.
P, driehoekscentrum X(43) is de X(6) Ceva toegevoegde van X(1). Dit betekent dat P, de X(6)-Ceva toegevoegde X(1) het perspectiefcentrum is va de Ceva driehoek van X(6) en de anticeva driehoek van X(1).
Het isogonale toegevoegde punt van X43, het driehoekscentrum X(43) construeer je als volgt:
- Spiegel de rechten AX43, BX43, CX43 t.o.v. de bissectrices van ABC (=blauwe lijnen).
- Deze blauwe lijnen snijden elkaar in het driehoekscentrum X(87).