GeoGebra
GeoGebra
動的複素関数論
ガウス平面
複素数の関数
一次函数
初等関数
複素関数の微分
リーマン面
複素積分
動的複素関数論
作成者:
Bunryu Kamimura
トピック:
複素数
,
座標
,
コサイン
,
関数
,
関数グラフ
,
べき関数
,
サイン
,
三角関数
複素数と簡単な複素関数のイメージを育てるためのブックです。 複素数を動かしながら複素数と複素関数について学んでいきましょう。 参考サイト 【オイラーの公式の発見】
http://hamaguri.sakura.ne.jp/euler.html
オイラーの公式がわかるととても便利です。
目次
ガウス平面
y=x^2+1の根はどこにあるの?
ガウス平面と演算
共役複素数
ド・モアブルの定理
e^(iθ)=cosθ+isinθ
re^(iθ)=
複素数のかけ算の意味
x^n-1=0の解
複素数の関数
w=z+2とw=2z
複素関数のイメージ Complex number function
w=z^2+1
w=z^2+1の座標変換
w=x^2+1の対応
w=z^2+1の円座標
w=z^2+1の特異点
複素関数 w=1/z
1/zの軌跡
w=1/zの写像
w=z^d
W=z^a の写像
一次函数
w=1/(1-z)とw=z/(1-z)
w=(cz+1)/(z+c)
複素関数の一次函数
一次函数(等角写像)
初等関数
w=A^z の写像
logzとe^z
logzの変換座標
三角関数
sinzの写像
w=coszの写像
複素関数の微分
w=z^Bの微分
べき関数の微分
等角写像
リーマン面
三角関数と指数関数
w=z^2の特異点
w=√z (リーマン面を考えるわけ)
リーマン面のイメージ
complex grid
複素積分
複素積分 w=z^3
f(z)=zの経路積分(長さ)
複素積分 w=z^2
次へ
y=x^2+1の根はどこにあるの?
新しい教材
サイクロイド
正17角形 作図 regular 17-gon 2
standingwave
接点の作る円は内接円
目で見る立方体の2等分
教材を発見
勾配ベクトル場
得点分布図から標準偏差を求める (H23広島)
重なった部分の面積(いろいろな関数)
ミケルの定理(円錐曲線)
台形の面積
トピックを見つける
掛け算
直線
一次方程式
一般的な四角形
二次方程式