Inégalité triangulaire
Visualisation de l’inégalité triangulaire
Avec cette application vous apprenez que l'inégalité triangulaire exprime l'idée que la distance est une mesure minimale. Vous voyez que le chemin le plus court d’un point à un autre est le segment qui les joint et que tout autre trajet est plus long.
De plus vous apprenez les conditions nécessaires que doivent remplir trois côtés (ici a, b et c) afin qu'ils puissent donner naissance à un triangle (ici ABC).
Utilisez les curseur (pour a, b et c) pour faire varier les longueurs données des côtés, ainsi vous voyez comment le triangle ABC se comportera suite à une modification de longueur d'un (de deux ou trois) côté(s).