Google Classroom
Google Classroom
GeoGebra
GeoGebra Classroom
Abrir sesión
Buscar
Google Classroom
Google Classroom
GeoGebra
GeoGebra Classroom
Esquema
最小問題
垂足三角形が最短の周を持つことのシュワルツの証明
フェルマー点最小証明
ヤギの水飲み
二面に寄る最短コース
光の反射とホイヘンスの原理
垂心と垂足三角形
ワトソンの定理
シュタイナー点(4点)
最小問題
Autor:
Bunryu Kamimura
Tema:
Problemas de Optimización
,
Ortocentro
この証明のしかたがとてもエレガント。 図を動かしているだけでわかる!
垂足三角形が最短の周を持つことのシュワルツの証明
フェルマー点最小証明
ヤギの水飲み
二面に寄る最短コース
光の反射とホイヘンスの原理
垂心と垂足三角形
ワトソンの定理
シュタイナー点(4点)
Siguiente
垂足三角形が最短の周を持つことのシュワルツの証明
Nuevos recursos
カージオイド
standingwave-reflection-free
二次曲線と離心率
standingwave
対数螺旋
Descubrir recursos
確率密度関数
区間両端
正五角形の作図
サインカーブの曲率
三角形の外角
Descubre temas
Cuadrado
Función potencial
Segmento Mediana
Círculo
Funciones escalonadas