Google Classroom
Google Classroom
GeoGebra
GeoGebra Classroom
Sign in
Search
Google Classroom
Google Classroom
GeoGebra
GeoGebra Classroom
Outline
最小問題
垂足三角形が最短の周を持つことのシュワルツの証明
フェルマー点最小証明
ヤギの水飲み
二面に寄る最短コース
光の反射とホイヘンスの原理
垂心と垂足三角形
ワトソンの定理
シュタイナー点(4点)
最小問題
Author:
Bunryu Kamimura
Topic:
Optimization Problems
,
Orthocenter
この証明のしかたがとてもエレガント。 図を動かしているだけでわかる!
垂足三角形が最短の周を持つことのシュワルツの証明
フェルマー点最小証明
ヤギの水飲み
二面に寄る最短コース
光の反射とホイヘンスの原理
垂心と垂足三角形
ワトソンの定理
シュタイナー点(4点)
Next
垂足三角形が最短の周を持つことのシュワルツの証明
New Resources
二次曲線と離心率
6章⑥三角柱の展開図
正17角形 作図 regular 17-gon
斜めドップラー
サイクロイド
Discover Resources
アドバンス189
test2
両区間に文字を含む時の2次関数の最大値_修正版
Animations of Reuleaux triangle
位置の表し方(空間座標)
Discover Topics
Trapezoid
Triangles
Plane Figures or Shapes
Kite
Continuity