Images . Polyhedron(V=120) from Biscribed Pentakis Dodecahedron for the case of a trisection of its 10th-order segments
Generating Elements of mesh modeling the surfaces of polyhedron, its dual image and the coloring of their edges and faces can be found in the applet.
![Image](https://beta.geogebra.org/resource/mnfw6drf/6DQKxuskMaZcVWnK/material-mnfw6drf.png)
Elements in polyhedron Biscribed Pentakis Dodecahedron(10)
Vertices: V = 120.
Faces: F =152. 80{3}+60{4}+12{5}
Edges: E =270. 120+30+60+60 - The order of the number of edges in this polyhedron are according to their length.
![Image](https://beta.geogebra.org/resource/gs3dfbah/YzF3ti1hF5y0DMy0/material-gs3dfbah.png)
![Image](https://beta.geogebra.org/resource/fe7zhacx/7Tqhoiww20EAE1DB/material-fe7zhacx.png)
![Image](https://beta.geogebra.org/resource/aurw9kxc/I7I8nXHgjznDQp2A/material-aurw9kxc.png)
![Image](https://beta.geogebra.org/resource/cqujwtby/oxZLTxvJ2OaYNY1w/material-cqujwtby.png)
The elements of the dual to the Biscribed Pentakis Dodecahedron(10)
Vertices: V = 152.
Faces: F =240. 180{3}+60{4}
Edges: E =390. 30+60+120+60+60+60- The order of the number of edges in this polyhedron are according to their length.
![Image](https://beta.geogebra.org/resource/hjsevedq/D3kZovSyq60dxW7k/material-hjsevedq.png)
![Image](https://beta.geogebra.org/resource/jjftkznj/j3DEuOJK4eJK2bdH/material-jjftkznj.png)
![Image](https://beta.geogebra.org/resource/atxqtxhh/liLyIn07aVf3w8nT/material-atxqtxhh.png)