Google Classroom
Google Classroom
GeoGebra
GeoGebra Classroom
Sign in
Search
Google Classroom
Google Classroom
GeoGebra
GeoGebra Classroom
GeoGebra
Home
Resources
Profile
Classroom
App Downloads
Die zum Fermat-Problem gehörende Maximumaufgabe
Author:
Roman Chijner
Topic:
Area
,
Calculus
,
Centroid or Barycenter
,
Circumcircle or Circumscribed Circle
,
Constructions
,
Coordinates
,
Geometry
,
Intersection
,
Isosceles Triangles
,
Special Points
,
Triangles
https://did.mat.uni-bayreuth.de/geonet/beispiele/minimum/ ... Mit der Lösung des Fermat-Problems:
Gibt es in jedem Dreieck einen Punkt F so, daß die Summe der Entfernungen von F zu den drei Eckpunkten minimal ist?
ist somit gleichzeitig das
maximale umbeschriebene gleichseitige Dreieck
bestimmt und umgekehrt. Ein Minimum- und ein Maximumproblem, die so miteinander zusammenhängen, heißen zueinander dual. Das Fermat-Problem und die Bestimmung des maximalen gleichseitigen Umdreiecks können somit als die Urväter der Dualitätsprobleme der Optimierungstheorie angesehen werden.
GeoGebra
New Resources
အခြေခံ data အခေါ်အဝေါ်များ
Luxembourg Symbol
apec
MC #2
從邊長辨認四邊形
Discover Resources
Forum_32456_B_GroupList
Icosahedron with net
Katherine Andres
Translação do 2°Q (x+2, y-6)
Symmetry Check Right Triangle
Activity 4: Angles in the same segment
Discover Topics
Ratios
Congruence
Vectors 3D (Three-Dimensional)
Conic Sections
Hypothesis Testing