Google Classroom
GeoGebra
GeoGebra Classroom
Sign in
Search
Google Classroom
GeoGebra
GeoGebra Classroom
GeoGebra
Home
Resources
Profile
Classroom
App Downloads
Die zum Fermat-Problem gehörende Maximumaufgabe
Author:
Roman Chijner
Topic:
Area
,
Calculus
,
Centroid or Barycenter
,
Circumcircle or Circumscribed Circle
,
Constructions
,
Coordinates
,
Geometry
,
Intersection
,
Isosceles Triangles
,
Special Points
,
Triangles
https://did.mat.uni-bayreuth.de/geonet/beispiele/minimum/ ... Mit der Lösung des Fermat-Problems:
Gibt es in jedem Dreieck einen Punkt F so, daß die Summe der Entfernungen von F zu den drei Eckpunkten minimal ist?
ist somit gleichzeitig das
maximale umbeschriebene gleichseitige Dreieck
bestimmt und umgekehrt. Ein Minimum- und ein Maximumproblem, die so miteinander zusammenhängen, heißen zueinander dual. Das Fermat-Problem und die Bestimmung des maximalen gleichseitigen Umdreiecks können somit als die Urväter der Dualitätsprobleme der Optimierungstheorie angesehen werden.
GeoGebra
New Resources
Conchoids of Nicomedes
seo tool
Simple 3D Vector Field
Constructing the Perpendicular Line Through a Point Not on the Line
Rolle's Theorem
Discover Resources
Net of a Square Based Pyramid
Untitled
Parabel 2AHWIM
Writing Inverse Functions: Quiz (3)
Discover Topics
Stochastic Process or Random Process
Histogram
Arithmetic
Circle
Vectors 2D (Two-Dimensional)