Explorando a Função Quadrática

Tópico:
Funções

Explore a atividade acima, experimente alterar os valores dos coeficientes a, b e c (que são os respectivos controles deslizantes). Observe as alterações no gráfico da função conforme os coeficientes são modificados. Logo após resolva as questões abaixo:

Controle deslizante "a": representa o coeficiente "a" na função quadrática . Com base nessa informação responda as questões 1, 2 e 3 abaixo.

1) Mova o controle deslizante "a" de forma que seu valor seja positivo. Dessa forma a concavidade da parábola está voltada:

Assinale a sua resposta aqui

2) Agora mova o controle deslizante "a" de forma que seu valor seja negativo. Dessa forma a concavidade da parábola está voltada:

Assinale a sua resposta aqui

3) Se você mover o controle deslizante "a" de forma que assuma o valor a = 0, o que acontecerá com o gráfico da função?

Controle deslizante "b": Está associado ao coeficiente b da função quadrática . Com base nessa informação, responda a questão 4.

4) Movimente lentamente o controle deslizante "b" para a direita e esquerda, verificando como a parábola se inclina após ultrapassar o eixo Y. Responda o que você observa graficamente quando: a) b > 0 b) b < 0 c) b = 0

O controle deslizante "c" está associado ao coeficiente c da função quadrática . Ele indica onde a parábola "corta" no o eixo Y , ou seja, o ponto C (0, c). Com base nessas informações, responda a questão 5.

5) Movimente o controle deslizante "c" para a direita e para esquerda e responda o que você observa graficamente quando: a) c > 0 b) c < 0 d) c = 0

Explorando as raízes da função quadrática. As raízes estão associadas aos pontos onde a parábola intercepta (corta) o eixo do X, que são os pontos A e B no gráfico apresentado acima. Porém, dependendo de algumas situações, podemos encontrar duas raízes reais e iguais ou não teremos raiz real. Vamos agora estudar algumas situações envolvendo as raízes da função quadrática, resolvendo as questões de 6 até 9.

6) Encontre as raízes da função f(x) = x2- 4x +3 e logo após posicione os controles deslizantes em: a =1 , b = -4 e c = 3. Esses são os respectivos coeficientes da função. Responda: a) A parábola corta o eixo do X em algum ponto? Se sua resposta for afirmativa, qual ou quais são esses pontos? Relacione-os às suas raízes. b) Qual o valor do discriminante (delta) encontrado? Analise para responder a última pergunta das atividades.

7) Encontre as raízes da função f(x) = 2x2- 4x +5 e logo após posicione os controles deslizantes em: a =2 , b = -4 e c = 5. Esses são os respectivos coeficientes da função. Responda: a) A parábola corta o eixo do X em algum ponto? Se sua resposta for afirmativa, qual ou quais são esses pontos? Relacione-os às suas raízes. b) Qual o valor do discriminante (delta) encontrado? Analise para responder a última pergunta das atividades.

8) Encontre as raízes da função f(x) = -1x2 +4x -4 e logo após posicione os controles deslizantes em: a =-1 , b = 4 e c = -4. Esses são os respectivos coeficientes da função. Responda: a) A parábola corta o eixo do X em algum ponto? Se sua resposta for afirmativa, qual ou quais são esses pontos? Relacione-os às suas raízes. b) Qual o valor do discriminante (delta) encontrado? Analise para responder a última pergunta das atividades.

9) Cada caso acima foi exemplificado à uma situação relacionada ao discriminante e às possíveis situações das raízes da função quadrática. Analise os exemplos acima e responda: a) Quando tivemos, no gráfico, dois pontos interceptando o eixo X, qual o sinal do discriminante encontrado (positivo, negativo ou nulo)? b) Quando tivemos, no gráfico, somente um ponto interceptando o eixo X, qual o sinal do discriminante encontrado (positivo, negativo ou nulo)? c) Quando não tivemos, no gráfico, nenhum ponto interceptando o eixo X, qual o sinal do discriminante encontrado (positivo, negativo ou nulo)?