Googleクラスルーム
GeoGebraGeoGebra Classroom

7.ベクトルと空間

このページは電子ブック探求 数学B・Cの一部です。

★ベクトルを利用して方程式を作ろう

★法線ベクトルを利用して面対称をさぐろう。

1.平面と直線

<直線の式> 直線のベクトル方程式は2次元のときと全く同じで ベクトルの足し算が途中の点を省いた最短矢印であることから、 ・2点A を通り方向[direction]ベクトルと平行な直線上の点Pは とかける。 ・2点A,Bを通る直線の方向ベクトルは だから、  2点ABを通る直線は となる。s=1-tとおくと <ベクトルの和> 方向が3つ独立に取れるために、3つのベクトルの和は2つの和で求めた対角線と3つ目のベクトルとの和になり、3つのベクトルの張る平行6面体の対角線ベクトルになります。 <ベクトルの成分> ベクトルの成分計算は、和・差・定数倍については2次元と同様になります。 内積の成分計算は、同方向成分の積の和なので、3つめの次元(成分)の積和が増えるだけです。 (例) 「2つのベクトルの作る角度を求めよう。a=(1,-1,2),b=(-1,-2,1)」  |a|=√6,|b|=√6, a・b=-1+2+2=3。cosθ=1/2だから、θ=60度。 <平面の方程式> ・定点Aを通り2点B,Cを通る直線と垂直な平面上の点Pがある。 ベクトルAPとベクトルBCが垂直、つまり、内積=0という式と同値。=0。 ・定点Aを通り、2つの方向ベクトルAQARが張る平面上の点Pがある。 2つの方向ベクトルで平面の傾きが決まり、平面の位置が決まる。 (例) 「四面体OABCのPがOAの中点、QがOBを2:1に内分する点、RがBCの中点。  3点PQRを通る面と辺ACの交点をSとするとき、AS:SC」は?  Oを基準に小文字の頂点名を位置ベクトルとする。  p=1/2a, q=2/3b, r=1/2b+1/2c, s=ma+nc(m+n=1)となる。  ベクトルPQ=q-p=2/3b-1/2a,ベクトルPR=r-p=1/2b+1/2c-1/2a。  この2つのベクトルが張る傾きで定点Pを通ると3点PQRを通る平面となりsも通る。 s=OP+uPQ+vPR =1/2a+u(2/3b-1/2a)+v(1/2b+1/2c-1/2a)=1/2(1-u-v)a+(2/3u+1/2v) b+1/2v c=ma+nc(m+n=1) a,b,cは一次独立だから係数比較して、4u=-3v, 1-u-v+v=2から、u=-1,v=4/3となる。 m=1/2(1+1-4/3)=1/3, n=2/3から、ACを2:1に内分する。 (例) 「3点の座標をA(3,0,0),B(2,1,2),C(1,-2,2)とするとき原点から三角形ABCに下ろした足Hの座標と OHの長さ」は? ベクトルAB=(-1,1,2)、AC=(-2,-2,2)となるから、平面ABCへの法線ベクトルをn=(x,y,z)とおくと、 法線とABACは垂直だから、-x+y+2z=0, -2x-2y+2z=0。これから、x:y:z=-3:1:-2となる。 だから、ベクトルOH=(-3p, 1p, -2p)とおける。 点Hは平面ABC上にあるので、ベクトルOHOA+uAB+vAC=(3-u-2v, u-2v, 2u+2v) これを解くと、u=3/14、v=3/7, p=-9/14となるから、H(27/14, -9/14, 9/7) OH2=(9+1+4)p2=14p2=14(-9/14)2=81/14より、OH=9/√14。 (例) 「点A(1,2,4)を通り、法線ベクトルn=(-3,1,2)の平面に関して、点Q(-2,1,7)と対称な点R  の座標」は?  平面上の点をP(x,y,z)とするとnとベクトルAPの内積=0となるから、 -3(x-1)+1(y-2)+2(z-4)=0から、-3x+y+2z=7。  ベクトルOR=OQ+の定数倍=(-2,1,7)+t(-3,1,2)=(-2-3t, 1+t,7+2t)。  2点QとRの中点M=(OQ+OR)/2=(-2-3/2t,1+1/2t,7+t)。Mは対称面上にあるので、  -3(-2-3/2t)+(1+ 1/2t)+2(7+t)=7。これから、t=-2。R=(-2-3(-2), 1-2, 7+2(-2))=(4,-1,3) <球の方程式> ・円の方程式は定点Cからの距離rが一定な点Pの集合。 |p-c|=rまたは、 (p-c)・(p-c)=r2 (例) 「原点を中心とする半径3の球と直線x=3k,y=-k,z=2kとの交点Pの座標」は? 球の方程式にx2+y2+z2=9に直線の方程式を代入すると、(9+1+4)k2=9、k=±3/√14。 1+1+4=6, 4+4+4=12, (2-2+4)2=16だから、面積は1/2√(6・12-16)=√14。 (例) 「2点A(2t,2t,0),B(0,0,t)に対して点P(x,y,z)が内積の和がOP・AP+OP・BP+AP・BP=3となる。Pの座標」を  tを使って表すと? (x,y,z)・(x-2t+x-0,y-2t+y-0,z-0+z-t)+(x-2t,y-2t,z-0)・(x-0,y-0,z-t)=3 式を整理して、(x-2/3t)2+(y-2/3t)2+(z-1/3t)2=1+t2 中心C(2/3t, 2/3t, 1/3t)で、半径√(1+t2)、OC=t,CP=半径。OP=t+√(1+t2) <三角形の面積> 三角形のOABの面積は1/2|a||b|sinθ= (例) 「3点の座標をA(3,0,0),B(2,1,2),C(1,-2,2)とするとき三角形ABCの面積」は? ベクトルAB=(-1,1,2)、AC=(-2,-2,2)となるから、それぞれの絶対値の2乗と内積の2乗は、 1+1+4=6, 4+4+4=12, (2-2+4)2=16だから、面積は1/2√(6・12-16)=√14。

2.多次元ベクトル

<コサイン類似度> (おいしさ,甘さ,辛さ)の3次元で、食品1から7のデータを平均して整数化したとします。 食品1=(5,2,3),食品2=(4,5,2), 食品3=(1,2,5), 食品4=(5,4,3),食品5=(3,5,2), 食品6=(2,5,3), 食品7=(3,1,1) 基準となる食品1から3に対して、食品4から7までの類似度を計算します。 計算方法はcosθ=a・b/|a||b|という、コサインθの値が-1から1をとることを利用します。 −1は正反対の、1は同じ、0は無関係という類似度判定をします。 これがコサイン類似度。 食品4,食品5,食品6,食品7に対して、 食品1は、0.96、0.87、0.76、0.97 食品2は、0.96、0.99、0.94、0.85 食品3は、0.72、0.71、0.79、0.55 食品2と食品5(0.99)が似ていて,食品3と食品7(0.55)が似ていない。 食品だけなく、単語の意味、画像データなど、多次元に分解して、 コサイン類似度を求めて比較することは、機械学習や人工知能ではよく使われています。 <相関係数> 相関係数は共分散:データと平均の差を偏差という。  2項X,Yについてのx偏差とy偏差の積の平均をxyの共分散(covariance)という。 相関係数(correlation coefficeant):2量の共分散Sxyを2量の変量の標準偏差の積SxSyで割った商。 r= <相関係数の性質> 「相関係数の絶対値は1以下である。」 n人のXとYの偏差データを、n要素をもつベクトルa、ベクトルbとすると、 相関係数 r = abの内積/(aの大きさ・bの大きさ) ==cosθ と、上記のコサイン類似度と同じことになる。 r=cosθは-1以上1以下。 r=0のとき、θ=90°(無相関)。 r=1のとき、 θ=0(最大の正の相関)2つのベクトルは同じ向きに重なる。 r=-1のとき、θ=180°(最大の負の相関)2つのベクトルは逆向きに1直線になる。