Google Classroom
Google Classroom
GeoGebra
GeoGebra Classroom
Sign in
Search
Google Classroom
Google Classroom
GeoGebra
GeoGebra Classroom
GeoGebra
Home
Resources
Profile
Classroom
App Downloads
The Center of the Kiepert Hyperbola
Author:
Steve Phelps
Topic:
Geometry
,
Hyperbola
The center of the Kiepert hyperbola is found as follows: Construct the orthic triangle DEF. The Brocard axes of the triangles ADE, BDF, and CEF are concurrent at the center K1 of the hyperbola.
GeoGebra
New Resources
Discriminant of y = ax² + bx + c
Sine and Cosine on the Unit Circle
seo tool
גיליון אלקטרוני להעלאת נתוני בעיה ויצירת גרף בהתאם
Vertical and Oblique Asymptote
Discover Resources
Example 3
Investigating Similarity
Constructing Parallelogram
Discover Topics
Random Experiments
Real Numbers
Histogram
Pythagoras or Pythagorean Theorem
Sphere