Strecken, Stauchen, Spiegeln von ganzrationalen Funktionen
Das Strecken und Stauchen in y-Richtung und Spiegeln an der x-Achse kennst du bereits von den Potenzfunktionen.
Arbeitsauftrag
Übertrage dein Wissen nun auf ganzrationale Funktionen und
versuche den Graphen der unten abgebildeten Funktion f mit f(x)=x³ - 3x
a) mit dem Faktor 2 in y-Richtung zu strecken
b) mit dem Faktor 0,5 in y-Richtung zu stauchen
c) mit dem Faktor -1 an der y-Achse zu spiegeln
indem du jeweils eine eigene Funktion g(x), h(x) und i(x) im Eingabefeld neben dem "+"Zeichen eingibst (am Ende sollen 4 Graphen zu sehen sein: Ein Komma wird als Punkt eingegeben, also 0.5 statt 0,5 und "hoch" kann man durch Drücken der ^-Taste erreichen).
Hinweis: Überprüfe durch genaues Hinsehen, ob die von dir eingegeben Funktionsgleichung wirklich die
gewünschte Streckung/Stauchung bewirkt hat. Wenn nicht, versuche es erneut mit einer anderen
Funktionsgleichung.
Arbeitsauftrag 2 Formuliere eine Regel: Der Graph einer ganzrationalen Funktion wird durch den Faktor a gestreckt/gestaucht, indem man ...
Arbeitsauftrag 3
Überprüfe deine Vermutung, indem du deine Regel auf den abgebildeten Graphen der Funktion f
mit f(x)= - 3x² + 1 überträgst und versuchst, den Graphen
a) mit dem Faktor 2 in y-Richtung zu strecken
b) mit dem Faktor 0,5 in y-Richtung zu stauchen
c) mit dem Faktor -1 an der y-Achse zu spiegeln
indem du jeweils eine eigene Funktion g(x), h(x) und i(x) im Eingabefeld neben dem "+"Zeichen eingibst (am Ende sollen 4 Graphen zu sehen sein).