Images . Rhombicosidodecahedron from Biscribed Pentakis Dodecahedron for the case of trisection of its 1st-order segments
![Image](https://beta.geogebra.org/resource/px3znycd/pOhamYmh7dhGKLpL/material-px3znycd.png)
Elements in polyhedron Biscribed Pentakis Dodecahedron(1)
Vertices: V = 120.
Faces: F =122. 20{3}+(30+60){4}+12{5}
Edges: E =240. 60+60+60+60- The order of the number of edges in this polyhedron are according to their length.
![Image](https://beta.geogebra.org/resource/rep3upn2/ErK05ube8KnlQsCN/material-rep3upn2.png)
![Image](https://beta.geogebra.org/resource/rvt9hz5g/QVlJsyVDSi0UFZQk/material-rvt9hz5g.png)
![Image](https://beta.geogebra.org/resource/vqx5tj3j/hQLX1c4ccIid35f3/material-vqx5tj3j.png)
![Image](https://beta.geogebra.org/resource/tak3jny8/g8MCx4fkEkWMSy5Q/material-tak3jny8.png)
![Image](https://beta.geogebra.org/resource/cvqfm6pd/y7KVvaibsDavSTtV/material-cvqfm6pd.png)
![[size=85] If we assume that all quadrilaterals lie in the same plane, then our polyhedron approximately looks like
ht[url=https://robertlovespi.net/2014/06/02/zonish-versions-of-the-rhombicosidodecahedron/]tps://robertlovespi.net/2014/06/02/zonish-versions-of-the-rhombicosidodecahedron/[/url]
Elements in polyhedron Biscribed Pentakis Dodecahedron(1)
[b]Vertices:[/b] V =120.
[b]Faces [/b]F =62. 20{3}+(30){8}+12{5}
[b]Edges:[/b] E =180. 60+60+60- The order of the number of edges in this polyhedron according to their length.[/size]](https://beta.geogebra.org/resource/trnu6un9/ZK0xqw3pVztE5D1R/material-trnu6un9.png)
The elements of the dual to the Biscribed Pentakis Dodecahedron(1):
Vertices: V = 122.
Faces: F =240. 240{3}
Edges: E =360. 60+60+60+60+120- The order of the number of edges in this polyhedron are according to their length.
![Image](https://beta.geogebra.org/resource/az7q4z2h/45b5meXVbQfNSKeV/material-az7q4z2h.png)