LSRL as the Envelope of a Hyperbola
Fix two points (A and B) in the plane. Take a third point (C) and construct the Least Squares Regression Line (LSRL)
Let C move horizontally. The collection of all possible LSRL forms the envelope of a hyperbola.
There are over 400 LSRL in the applet below.
Neue Materialien
Entdecke Materialien
- punto di torriceli-fermat
- Curved Surface Area of Cones (Parametric Curved Surface)
- Voronoi by inflating spheres
- 삼각형의 세 변의 수직이등분선은 한점(외심)에서 만나고 이 점(외심)에서 세 꼭짓점에 이르는 거리는 같다.(The vertical bisector of the three sides of the triangle meet at one point (circumcenter) and the distance from this point (circumc
- Angry Birds: The Quadratic Game (Stage 4)