Google Classroom
GeoGebraGeoGebra Classroom

Lösungsfälle von Gleichungssystemen

Einführung Gleichungssysteme

Was ist ein Gleichungssystem?

(Mehrfachantworten möglich!)

Wähle alle richtigen Antworten aus
  • A
  • B
  • C
  • D
  • E
Antwort überprüfen (3)

NEUE INFORMATIONEN

Lies dir die Informationen über die Lösungsfälle genau durch und versuche sie dir zu merken. Unten gibt es Beispiele, bei denen du angeben sollst, wieviele Lösungsfälle die Gleichungen haben.

Ein lineares Gleichungssystem mit ZWEI Gleichungen in ZWEI Variablen kann mehrer Lösungsfälle aufweisen:

1.) Eine eindeutige Lösung grafisch schneiden sich 2 Geraden in einem Punkt rechnerisch kommt ein Zahlenpaar heraus also z.B. x=3 und y=5 => L={(3/5)}
2.) Keine Lösung grafisch: 2 parallele Geraden, die sich also NICHT schneiden rechnerisch kommt eine falsche Aussage heraus also z.B. 0=4 => L={}
3.) unendlich viele Lösungen grafisch: 2 identische Geraden, die Gerade selbst ist also die Lösung rechnerisch kommt eine wahre Aussage heraus also z.B. 4=4 => L={ (x/y) / y=3x+2} bedeutet jedes Zahlenpaar, dass die (Geraden)Gleichung erfüllt ist Lösung (also jeder Punkt auf der Geraden ist Lösung dieses Gleichungssystem

Zwei Geraden können folgende Lage zueinander haben: (Mehrfachantworten möglich!)

Wähle alle richtigen Antworten aus
  • A
  • B
  • C
  • D
Antwort überprüfen (3)

Ein Gleichungssystem mit 2 Gleichungen und 2 Variablen kann daher folgende Lösungen haben: (Mehrfachantworten möglich!)

Wähle alle richtigen Antworten aus
  • A
  • B
  • C
  • D
Antwort überprüfen (3)
Man kann so ein 2x2 Gleichungssystem (= 2 Gleichungen mit 2 Variablen) auch grafisch mit Geogebra lösen, indem man beide Geraden in Geogebra zeichnen lässt. Man sieht unten, dass das Gleichungssystem eine Lösung hat (ein Schnittpunkt). I: 2x-y=3 II: y+x=3

Wie lautet die Lösung des Gleichungssystem? Berechne ohne Geogebra. I: 2x-y=3 II: y+x=3

Löse nun folgende Aufgaben mit Geogebra und gib an, wieviele Lösungen das Gleichungssystem hat.

Löse das lineare Gleichungssystem grafisch mit Geogebra und gib die Anzahl der Lösungen an. I: x + 2y = 5 II: 2x - y = 0

Löse das lineare Gleichungssystem grafisch mit Geogebra und gib die Anzahl der Lösungen an. I: 2x + 2y = 5 II: -4x -4y = 0

Löse das lineare Gleichungssystem grafisch mit Geogebra und gib die Anzahl der Lösungen an. I: 2x + 2y = 5 II: -4x -4y = -10