Google Classroom
GeoGebra
GeoGebra Classroom
Abrir sesión
Buscar
Google Classroom
GeoGebra
GeoGebra Classroom
GeoGebra
Inicio
Recursos
Perfil
Classroom
Descargas
Two Sides and an Angle Not Between Them
Autor:
John McLain
Are two congruent sides and an angle not between them enough for congruent triangles?
GeoGebra
Given the original values, how many triangles are possible?
𝜋
Revisa tu respuesta
Keeping the other values the same, make a = 5.5. How many triangles are possible now?
𝜋
Revisa tu respuesta
Keeping the other values the same, how big would you need to make "a" so that you can only make one triangle?
𝜋
Revisa tu respuesta
Keeping the other values the same, make a = 5. How many triangles are possible now?
𝜋
Revisa tu respuesta
If the blue angle is acute, do you think two congruent sides and the angle not between them ALWAYS forces triangle to be the same?
Marca todas las que correspondan
A
Yes
B
No
Revisa tu respuesta (3)
Make the blue angle ninety degrees. Are there any side lengths that will produce more than one triangle?
Marca todas las que correspondan
A
Yes
B
No
Revisa tu respuesta (3)
If the blue angle is right, do you think two congruent sides and the angle not between them ALWAYS forces triangle to be the same?
Marca todas las que correspondan
A
Yes
B
No
Revisa tu respuesta (3)
Make the blue angle 120 degrees. Are there any side lengths that will produce more than one triangle?
Marca todas las que correspondan
A
Yes
B
No
Revisa tu respuesta (3)
If the blue angle is obtuse, do you think two congruent sides and the angle not between them ALWAYS forces triangle to be the same?
Marca todas las que correspondan
A
Yes
B
No
Revisa tu respuesta (3)
Nuevos recursos
Parametric surfaces: Sphere
Tanzanian Ngoma - Model 3
גיליון אלקטרוני להעלאת נתוני בעיה ויצירת גרף בהתאם
Kopie von Exact values on the unit circle (degrees)
အခြေခံ data အခေါ်အဝေါ်များ
Descubrir recursos
Trigonometry starter
export_bug
Volume of Sphere Proof- copy
secant line to x^2
An Application Of Parametrics
ARUE11C1bP63
Descubre temas
Cálculo de intereses
Rombos
Variables Aleatorias
Construcciones
Coseno