Definição Numérica de Limite
Aproximação Numerica
Seja a função
vamos analisar o comportamento da função para valores próximos de 0.
0.50000000 & 0.95885108 & -0.50000000 & 0.95885108\\
0.25000000 & 0.98961584 & -0.25000000 & 0.98961584\\
0.12500000 & 0.99739787 & -0.12500000 & 0.99739787\\
0.06250000 & 0.99934909 & -0.06250000 & 0.99934909\\
0.03125000 & 0.99983725 & -0.03125000 & 0.99983725\\
0.01562500 & 0.99995931 & -0.01562500 & 0.99995931\\
0.00781250 & 0.99998983 & -0.00781250 & 0.99998983\\
0.00390625 & 0.99999746 & -0.00390625 & 0.99999746\\
0.00195312 & 0.99999936 & -0.00195312 & 0.99999936\\
0.00097656 & 0.99999984 & -0.00097656 & 0.99999984\\
0.00048828 & 0.99999996 & -0.00048828 & 0.99999996\\
0.00024414 & 0.99999999 & -0.00024414 & 0.99999999\\
0.00012207 & 1.00000000 & -0.00012207 & 1.00000000\\
0.00006104 & 1.00000000 & -0.00006104 & 1.00000000\\
0.00003052 & 1.00000000 & -0.00003052 & 1.00000000\\
0.00001526 & 1.00000000 & -0.00001526 & 1.00000000\\
0.00000763 & 1.00000000 & -0.00000763 & 1.00000000\\
0.00000381 & 1.00000000 & -0.00000381 & 1.00000000\\
0.00000191 & 1.00000000 & -0.00000191 & 1.00000000\\