Definição Numérica de Limite

Aproximação Numerica

Seja a função vamos analisar o comportamento da função para valores próximos de 0. 0.50000000 & 0.95885108 & -0.50000000 & 0.95885108\\ 0.25000000 & 0.98961584 & -0.25000000 & 0.98961584\\ 0.12500000 & 0.99739787 & -0.12500000 & 0.99739787\\ 0.06250000 & 0.99934909 & -0.06250000 & 0.99934909\\ 0.03125000 & 0.99983725 & -0.03125000 & 0.99983725\\ 0.01562500 & 0.99995931 & -0.01562500 & 0.99995931\\ 0.00781250 & 0.99998983 & -0.00781250 & 0.99998983\\ 0.00390625 & 0.99999746 & -0.00390625 & 0.99999746\\ 0.00195312 & 0.99999936 & -0.00195312 & 0.99999936\\ 0.00097656 & 0.99999984 & -0.00097656 & 0.99999984\\ 0.00048828 & 0.99999996 & -0.00048828 & 0.99999996\\ 0.00024414 & 0.99999999 & -0.00024414 & 0.99999999\\ 0.00012207 & 1.00000000 & -0.00012207 & 1.00000000\\ 0.00006104 & 1.00000000 & -0.00006104 & 1.00000000\\ 0.00003052 & 1.00000000 & -0.00003052 & 1.00000000\\ 0.00001526 & 1.00000000 & -0.00001526 & 1.00000000\\ 0.00000763 & 1.00000000 & -0.00000763 & 1.00000000\\ 0.00000381 & 1.00000000 & -0.00000381 & 1.00000000\\ 0.00000191 & 1.00000000 & -0.00000191 & 1.00000000\\