Google Classroom
GeoGebraClasse GeoGebra

Idee !

Der Leitkreis ist ein Kreis um den Brennpunkt F2 mit fixem Radius:
  • die Ellipsengleichung ist.
Veränderbar ist die Ellipse mit dem Punkt P. Z ist veränderbar, und damit der Abstand von P zu Z und der identische Abstand von P zu Z'. Der Punkt bZ ist beweglich. Fragt man nach der Mittellinie zweier Kreise, also dem Ort der Punkte, die von zwei Kreisen denselben Abstand besitzen, so wird die algebraische Antwort wahrscheinlich eine implizite Kurve 4. Ordnung sein. Diese zerfällt wahrscheinlich in 2 Kegelschnitt-Gleichungen. Die gesuchte Ortskurve ist also eigentlich keine Ellipse (Georg Wengler). Es wäre interessant zu erforschen, wie der CAS-Modul von GeToolbar ImageGebra mit einer solchen Aufgabe umgeht.

Dieses Material ist eine Seite des GeoGebrabooks Zwei Kreise 20.05.2018