Google Classroom
GeoGebraClasse GeoGebra

Αντιγραφή του Limits of Rational Functions at Infinity

You have control over the slider , which changes the degree of the numerator of the given rational function. Notice that:
  • when the degree of the numerator is smaller than the degree of the denominator, there's a horizontal asymptote ,
  • when the degree of the numerator is equal to the degree of the denominator, there's a horizontal asymptote (the ratio of the leading coefficients),
  • when the degree of the numerator is one greater than the degree of the denominator, there's a slant (oblique) asymptote, and
  • when the degree of the numerator is more than one greater than the degree of the denominator, there's no horizontal or slant asymptote.