Logistisches Wachstum

Ein logistisches Wachstum liegt vor, wenn der momentane Zuwachs proportional zum momentanen Bestand und zum vorhandenen Freiraum angenommen wird. Die Differentialgleichung zur Beschreibung dieses Wachstumsmodells lautet (P Population, λ Parameter, K Kapazitätsgrenze)

und hat die Lösung



Näherungsweise kann diese Differentialgleichung durch eine entsprechende Differenzengleichung ersetzt werden. Diese hat die Form

Pn+1 Population zum Zeitpunkt (n+1), Pn Population zum Zeitpunkt n, K Kapazitätsgrenze; λ Parameter Aufgabe
  • Verändere die Schieberegler für K, P0, λ und Δt.
  • Was passiert, wenn die Anfangspopulation P0 größer als die Kapazitätsgrenze K ist?
  • Blende zum Vergleich die exakte Lösung der Differentialgleichung ein. Vergleiche die Lösung der Differenzengleichung und der Differentialgleichung für kleines und großes Δt.
  • Beschreibe, was passiert, wenn der Paramter λ erhöht wird.