Google Classroom
GeoGebraGeoGebra Třída

Circumcenter

A circumcenter is the point of concurrency of the three perpendicular bisectors. -Construct triangle XYZ and label the vertices with text toolToolbar Image. -Construct the perpendicular bisector Toolbar Imageof each side. -Use the intersect Toolbar Imagein the point menu to mark the circumcenter and name it A with text tool Toolbar Image.
Image
Construct the circumcenter below.

Drag the vertices of XYZ around. What kind of triangle is XYZ if the circumcenter A falls on the exterior of the triangle?

Zde označte odpověď(i)
  • A
  • B
  • C
Zkontrolovat mou odpověď (3)

What kind of triangle is XYZ if the circumcenter A falls on the triangle?

Zde označte odpověď(i)
  • A
  • B
  • C
Zkontrolovat mou odpověď (3)

What kind of triangle is XYZ if the circumcenter A is in the interior of the triangle?

Zde označte odpověď(i)
  • A
  • B
  • C
Zkontrolovat mou odpověď (3)
A circumscribed circle (circle that goes through each vertex) can be added in this construction above. Draw a segment from the circumcenter A to vertex X. This creates the radius of the circle (segment AX). Construct a circle on your construction above using your compass toolToolbar Image. Move the triangle around and verify the circle always goes through all vertices X, Y and Z.
Image

Drag around the vertices of XYZ. Does the circle always go through the three vertices and remain outside the triangle?

Zde označte odpověď(i)
  • A
  • B
Zkontrolovat mou odpověď (3)

Since a circumscribed circle goes through each vertex, the circumcenter is equidistant from each:

Zde označte odpověď(i)
  • A
  • B
Zkontrolovat mou odpověď (3)