distance between two particular points in a triangle
The applet allows to demonstrate that in any triangle whose sides form an arithmetic progression with a common difference of d, the distance between the point of intersection of the medians and the point of intersection of the angle bisectors is d/3 . There are two rulers in the applet:
The first ruler allows us to change the length a of the side BC’ and determines respectively the lengths of the sides AB and AC. The second ruler allows us to change the value of d – the common difference of the arithmetic progression, and in this way – to change the side lengths of the triangle.