Use a graphing program such as Geogebra with this assignment Transformation of Functions

The function $f(x)$ is defined as $f(x)=x^{2}$.
The function $g(x)$ is defined as $g(x)=\sin x$.
The function $h(x)$ is defined as $h(x)=x^{2}-1$.
The function $p(x)$ is defined as $p(x)=x^{2}-2 x$.

1. (i) Deduce an expression in x for:
(a) $f(x)+2$
(b) $f(x)+3$
(c) $f(x)+c$
(ii) Use your graphing program to draw graphs of:
(a) $y=f(x)$
(b) $y=f(x)+2$
(c) $y=f(x)+3$
(iii) By considering the graphs in part (ii), state the transformation of $y=f(x)$ which produces the graphs of $y=f(x)+2$ and $y=f(x)+3$, and deduce the graphical effect of transforming $y=f(x)$ into $y=f(x)+c$. Express your findings as clearly as possible. What happens if c is negative?
(iv) Deduce an expression in x for $g(x)+c$.
(v) By choosing a suitable value for c, check if your answer to (iii) still applies. Sketch the graphs of $y=g(x)$ and $y=g(x)+c$.
2. (i) Deduce an expression in x for:
(a) $f(x+2)$
(b) $f(x+3)$
(c) $f(x+c)$
(ii) Use your graphing program to draw graphs of:
(a) $y=f(x)$
(b) $y=f(x+2)$
(c) $y=f(x+3)$
(iii) By considering the graphs in part (ii), state the transformation of $y=f(x)$ which produces the graphs of $y=f(x+2)$ and $y=f(x+3)$, and deduce the graphical effect of transforming $y=f(x)$ into $y=f(x+c)$. Express your findings as clearly as possible. What happens if c is negative?
(iv) Deduce an expression in x for $g(x+c)$. By choosing a suitable value for c, check if your answer to (iii) still applies. Sketch the graphs of $y=g(x)$ and $y=g(x+c)$.
3. (i) Deduce an expression in x for:
(a) $2 h(x)$
(b) $3 h(x)$
(c) $k h(x)$
(ii) Use your graphing program to draw graphs of:
(a) $y=h(x)$
(b) $y=2 h(x)$
(c) $y=3 h(x)$
(iii) By considering the graphs in part (ii), state the transformation of $y=h(x)$ which produces the graphs of $y=2 h(x)$ and $y=3 h(x)$, and deduce the graphical effect of transforming $y=h(x)$ into $y=k h(x)$. Express your findings as clearly as possible.
(iv) Deduce an expression in x for $\operatorname{kg}(x)$. By choosing a suitable value for k, check if your answer to (iii) still applies. Sketch the graphs of $y=g(x)$ and $y=\operatorname{kg}(x)$.
4. (i) Deduce an expression in x for:
(a) $h(2 x)$
(b) $h(3 x)$
(c) $h\left(\frac{x}{2}\right)$
(d) $h\left(\frac{x}{3}\right)$
(e) $h(k x)$
(f) $h\left(\frac{x}{k}\right)$
(ii) Use your graphing program to draw graphs of:
(a) $y=h(x)$
(b) $h(2 x)$
(c) $h(3 x)$
(d) $h\left(\frac{x}{2}\right)$
(e) $h\left(\frac{x}{3}\right)$
(iii) By considering the graphs in part (ii), state the transformation of $y=h(x)$ which produces the graphs of $y=h(2 x), y=h(3 x), y=h\left(\frac{x}{2}\right)$ and $y=h\left(\frac{x}{3}\right)$, and deduce the graphical effect of transforming $y=h(x)$ into $y=h(k x)$ and $y=h\left(\frac{x}{k}\right)$. Express your findings as clearly as possible.
(iv) Deduce an expression in x for $g(k x)$ and $g\left(\frac{x}{k}\right)$. By choosing a suitable value for k, check if your answer to (iii) still applies. Sketch the graphs of $y=g(x)$, $y=g(k x)$ and $y=g\left(\frac{x}{k}\right)$.
5. (i) Deduce an expression in x for:
(a) $-h(x)$
(b) $p(-x)$
(ii) Use your graphing program to draw graphs of:
(a) $y=h(x)$
(b) $y=p(x)$
(c) $y=-h(x)$
(d) $y=p(-x)$
(iii) By considering the graphs in part (ii), state the graphical transformation of $y=h(x)$ which produces the graph of $y=-h(x)$ and the graphical transformation of $y=p(x)$ which produces the graph of $y=p(-x)$. Express your findings as clearly as possible.
6. Summarise the graphical transformations of $y=f(x)$ given by:
(a) $f(x)+c$
(b) $f(x+c)$
(c) $k f(x)$
(d) $f(k x)$
(e) $f\left(\frac{x}{k}\right)$
(f) $-f(x)$
(g) $f(-x)$

Express your findings as clearly as possible.

