Step 1: Open GeoGebra and hide the axes.
Step 2: Create a circle with center A and side point B.
Step 3: Place points C and D on the opposite side of the circle from B.
Step 4: Create segments CB and DB.
Step 5: Draw angle CBD (an inscribed angle).
Step 6: Now create segments CA and DA.
Step 7: Draw angle CAD (a central angle). Your construction should look similar to this:

Step 8: Now move any of the points A, B, C, or D around (try to move to places where the angle measures are close to whole numbers - it will help you make a conclusion.)

What do you notice about the measure of the inscribed angle CBD, compared to the central angle CAD?

Compare your results with the results of others near you. (REMEMBER: the measure of an arc is equal to the measure of the central angle that intercepts it.)

Your next conjecture could be: The measure of an inscribed angle is \qquad the measure of the intercepted arc.

