Transformation of Functions - Solutions

$$f(x) = x^2$$
, $g(x) = \sin x$, $h(x) = x^2 - 1$, $p(x) = x^2 - 2x$.

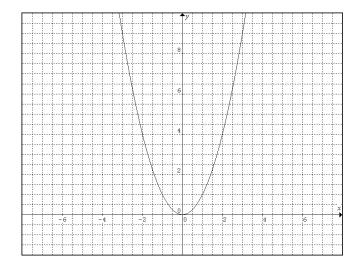
1. (i)

- (a) $f(x) + 2 = x^2 + 2$
- (b) $f(x) + 3 = x^2 + 3$

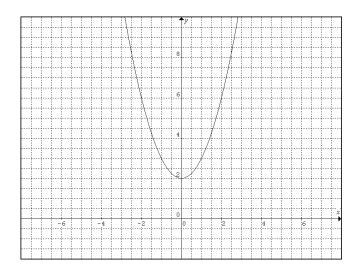
(c)
$$f(x) + c = x^2 + c$$

(ii)

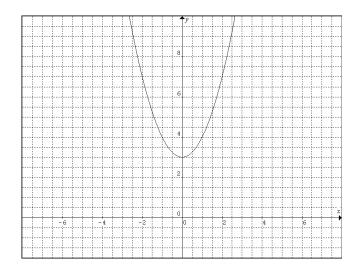
(a)
$$y = f(x)$$



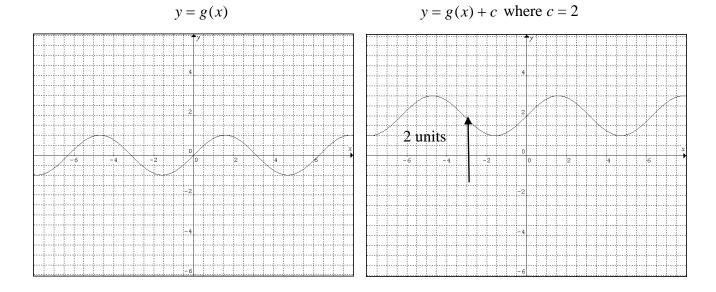
(b) y = f(x) + 2



(c) y = f(x) + 3

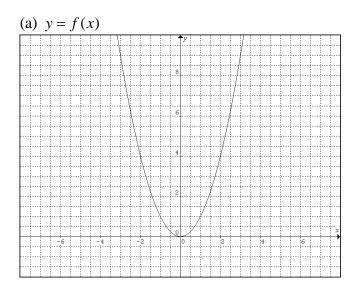


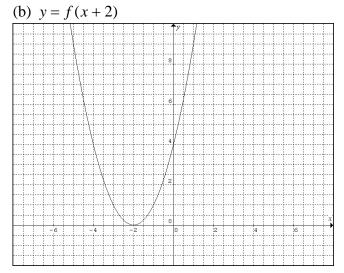
- (iii) the transformation of y = f(x) which produces the graphs of y = f(x) + 2 and y = f(x) + 3, is a shift of 2 and 3 units respectively in the positive y-direction. The graphical effect of transforming y = f(x) into y = f(x) + c is a shift (or translation) of c units in the positive y-direction. If c is negative, the graph shifts in the negative y-direction by c units.
- (iv) $g(x) + c = \sin(x) + c$.
- (v) The graph of g(x) is also shifted by 2 units in the positive y-direction by the transformation g(x) + 2, so the result in (iii) still applies:

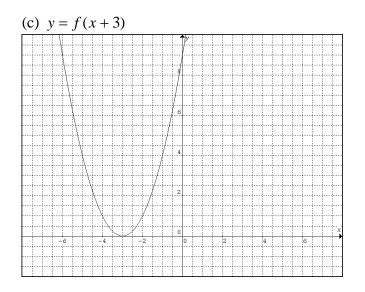


2. (i) (a)
$$f(x+2) = (x+2)^2$$

(b) $f(x+3) = (x+3)^2$
(c) $f(x+c) = (x+c)^2$
(ii)

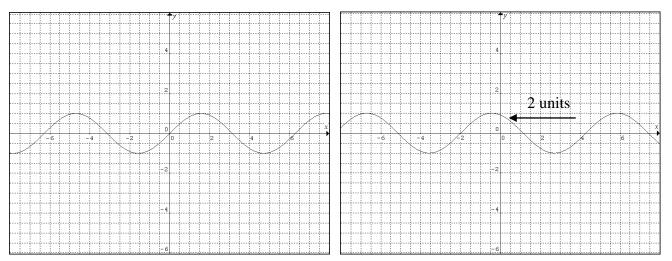






- (iii) the transformation of y = f(x) which produces the graphs of y = f(x+2) and y = f(x+3), is **a shift of 2 and 3 units respectively in the negative x-direction**. The graphical effect of transforming y = f(x) into y = f(x+c) is **a shift (or translation) of c units in the negative x-direction**. If c is negative, the graph shifts in the positive x- direction by c units.
- (iv) $g(x) + c = \sin(x + c)$.
- The graph of g(x) is also shifted by 2 units in the negative x-direction by the transformation g(x+2), so the result in (iii) still applies:

y = g(x + c) where c = 2

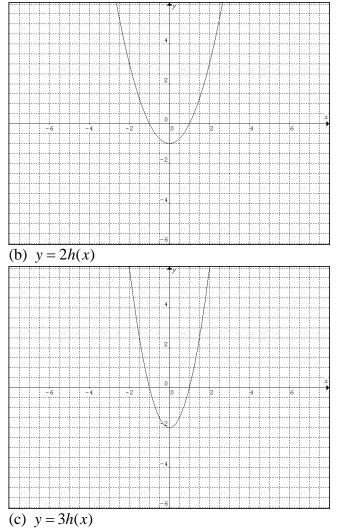


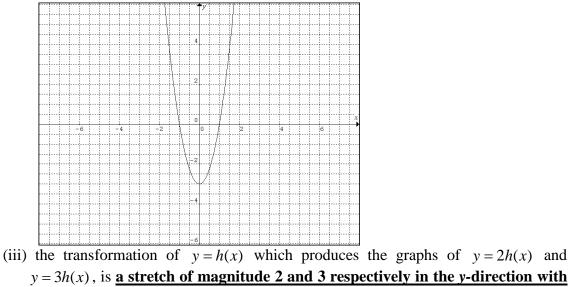
3. (i)(a)
$$2h(x) = 2(x^2 - 1)$$

(b) $3h(x) = 3(x^2 - 1)$

(c)
$$kh(x) = k(x^2 - 1)$$

(ii) (a) y = h(x)





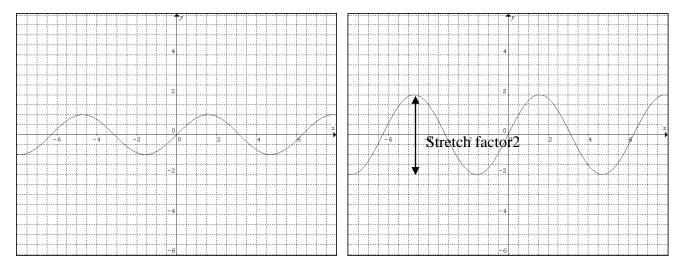
y = 3h(x), is a stretch of magnitude 2 and 3 respectively in the y-direction with the x-axis invariant. The graphical effect of transforming y = h(x) into y = kh(x)is a stretch of magnitude k in the y-direction with the x-axis invariant.

(iv)
$$kg(x) = k \sin x$$
.

The graph of g(x) is also stretched by a factor of 2 in the y-direction by the transformation $2 \sin x$, with the x-axis invariant, so the result in (iii) still applies:

$$y = g(x)$$

y = kg(x) where c = 2



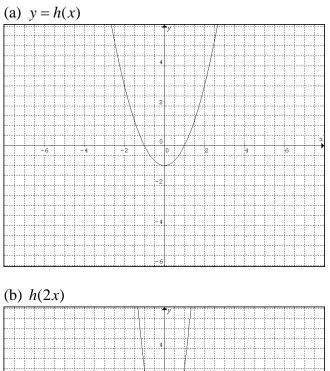
4. (i)

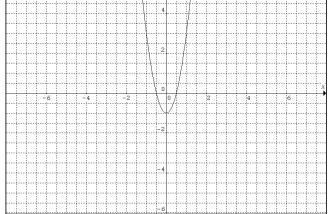
(a)
$$h(2x) = (2x)^2 - 1$$

(b) $h(3x) = (3x)^2 - 1$
(c) $h\left(\frac{x}{2}\right) = \left(\frac{x}{2}\right)^2 - 1$

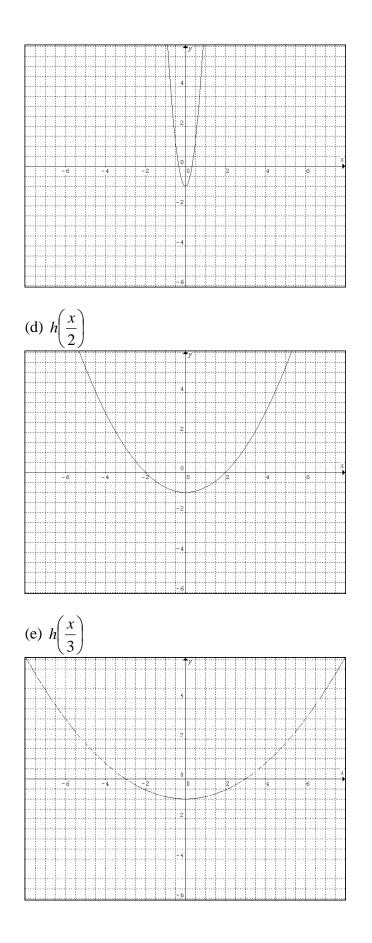
(d)
$$h\left(\frac{x}{3}\right) = \left(\frac{x}{3}\right)^2 - 1$$

(e) $h(kx) = (kx)^2 - 1$
(f) $h\left(\frac{x}{k}\right) = \left(\frac{x}{k}\right)^2 - 1$





(c) h(3x)



(iii) the transformation of y = h(x) which produces the graphs of y = h(2x), y = h(3x), $y = h\left(\frac{x}{2}\right)$ and $y = h\left(\frac{x}{3}\right)$, is <u>a stretch of magnitude $\frac{1}{2}$, $\frac{1}{3}$, 2, and 3 units</u> respectively in the *x*-direction with the *y*-axis invariant. The graphical effect of transforming y = h(x) into y = h(kx) and $y = h\left(\frac{x}{k}\right)$ is <u>a stretch of magnitude $\frac{1}{k}$ </u> and *k* units respectively in the *x*-direction with the *y*-axis invariant.

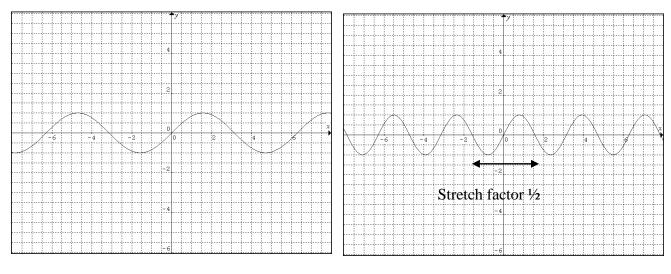
(iv) $g(kx) = \frac{\sin kx}{\sin kx}$.

$$g\left(\frac{x}{k}\right) = \sin\left(\frac{x}{k}\right).$$

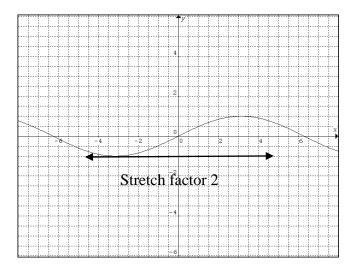
The graph of g(x) is also stretched by a factor of $\frac{1}{2}$ in the *x*-direction by the transformation $\sin 2x$, with the *y*-axis invariant, and the graph of g(x) is also stretched by a factor of 2 in the *x*-direction by the transformation $\sin\left(\frac{x}{2}\right)$, with the *y*-axis invariant, so the result in (iii) still applies:

$$y = g(x)$$

$$y = g(kx)$$
 where $c = 2$



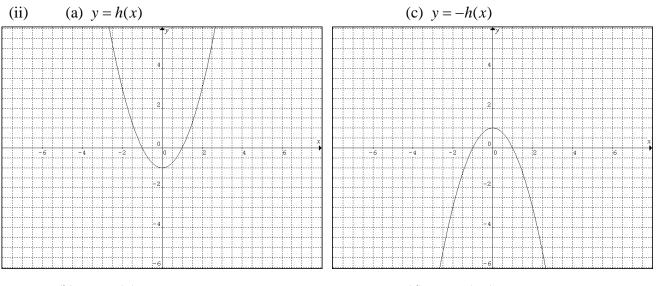
$$y = g\left(\frac{x}{k}\right)$$
 where $c = 2$



5. (i)

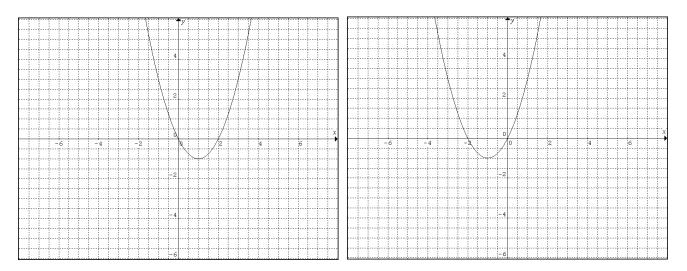
(a)
$$-h(x) = -(x^2 - 1) = 1 - x^2$$

(b) $p(-x) = (-x)^2 - 2(-x) = x^2 + 2x$



(b)
$$y = p(x)$$

(d) y = p(-x)



(iii) the transformation of y = h(x) which produces the graph of y = -h(x), is **<u>a</u>** reflection in the *x*-axis. The transformation of y = p(x) which produces the graph of y = p(-x), is <u>**a**</u> reflection in the *y*-axis.

- **6.** In summary:
 - (a) f(x) + c is a translation (or shift) of c units in the positive y-direction.
 - (b) f(x+c) is a translation (or shift) of c units in the negative x-direction.
 - (c) kf(x) is a stretch of magnitude k in the y-direction with the x-axis invariant.
 - (d) f(kx) is a stretch of magnitude $\frac{1}{k}$ in the *x*-direction with the *y*-axis invariant.
 - (e) $f\left(\frac{x}{k}\right)$ is a stretch of magnitude k in the x-direction with the y-axis invariant.

(f) -f(x) is a reflection in the *x*-axis.

(g) f(-x) is a reflection in the *y*-axis.