Transformation of Functions - Solutions

$f(x)=x^{2}, g(x)=\sin x, h(x)=x^{2}-1, p(x)=x^{2}-2 x$.

1. (i)
(a) $f(x)+2=x^{2}+2$
(b) $f(x)+3=x^{2}+3$
(c) $f(x)+c=x^{2}+c$
(ii)
(a) $y=f(x)$

(b) $y=f(x)+2$

(c) $y=f(x)+3$

(iii) the transformation of $y=f(x)$ which produces the graphs of $y=f(x)+2$ and $y=f(x)+3$, is a shift of $\mathbf{2}$ and 3 units respectively in the positive \boldsymbol{y}-direction. The graphical effect of transforming $y=f(x)$ into $y=f(x)+c$ is a shift (or translation) of c units in the positive y-direction. If c is negative, the graph shifts in the negative y-direction by c units..
(iv) $g(x)+c=\sin (x)+c$.
(v) The graph of $g(x)$ is also shifted by 2 units in the positive y-direction by the transformation $g(x)+2$, so the result in (iii) still applies:

$$
y=g(x)
$$

$$
y=g(x)+c \text { where } c=2
$$

2. (i) (a) $f(x+2)=(x+2)^{2}$
(b) $f(x+3)=(x+3)^{2}$
(c) $f(x+c)=(x+c)^{2}$
(ii)
(a) $y=f(x)$

(b) $y=f(x+2)$

(c) $y=f(x+3)$

(iii) the transformation of $y=f(x)$ which produces the graphs of $y=f(x+2)$ and $y=f(x+3)$, is a shift of $\mathbf{2}$ and $\mathbf{3}$ units respectively in the negative x-direction. The graphical effect of transforming $y=f(x)$ into $y=f(x+c)$ is a shift (or translation) of c units in the negative x-direction. If c is negative, the graph shifts in the positive x-direction by c units.
(iv) $g(x)+c=\sin (x+c)$.

The graph of $\overline{g(x)}$ is also shifted by 2 units in the negative x-direction by the transformation $g(x+2)$, so the result in (iii) still applies:

$$
y=g(x)
$$

$$
y=g(x+c) \text { where } c=2
$$

3. (i)(a) $2 h(x)=2\left(x^{2}-1\right)$
(b) $3 h(x)=3\left(x^{2}-1\right)$
(c) $k h(x)=k\left(x^{2}-1\right)$
(ii) (a) $y=h(x)$

(b) $y=2 h(x)$

(c) $y=3 h(x)$

(iii) the transformation of $y=h(x)$ which produces the graphs of $y=2 h(x)$ and $y=3 h(x)$, is a stretch of magnitude 2 and 3 respectively in the y-direction with the x-axis invariant. The graphical effect of transforming $y=h(x)$ into $y=k h(x)$ is a stretch of magnitude \boldsymbol{k} in the \boldsymbol{y}-direction with the \boldsymbol{x}-axis invariant.
(iv) $k g(x)=\underline{k \sin x}$.

The graph of $g(x)$ is also stretched by a factor of 2 in the y-direction by the transformation $2 \sin x$, with the x-axis invariant, so the result in (iii) still applies:

$$
y=g(x)
$$

$y=k g(x)$ where $c=2$

4. (i)
(a) $h(2 x)=(2 x)^{2}-1$
(b) $h(3 x)=(3 x)^{2}-1$
(c) $h\left(\frac{x}{2}\right)=\left(\frac{x}{2}\right)^{2}-1$
(d) $h\left(\frac{x}{3}\right)=\left(\frac{x}{3}\right)^{2}-1$
(e) $h(k x)=(k x)^{2}-1$
(f) $h\left(\frac{x}{k}\right)=\left(\frac{x}{k}\right)^{2}-1$
(ii)
(a) $y=h(x)$

(b) $h(2 x)$

(c) $h(3 x)$

(d) $h\left(\frac{x}{2}\right)$

(e) $h\left(\frac{x}{3}\right)$

(iii) the transformation of $y=h(x)$ which produces the graphs of $y=h(2 x), y=h(3 x)$, $y=h\left(\frac{x}{2}\right)$ and $y=h\left(\frac{x}{3}\right)$, is a stretch of magnitude $1 / 2,1 / 3,2$, and 3 units respectively in the \boldsymbol{x}-direction with the \boldsymbol{y}-axis invariant. The graphical effect of transforming $y=h(x)$ into $y=h(k x)$ and $y=h\left(\frac{x}{k}\right)$ is a stretch of magnitude $1 / k$ and k units respectively in the x-direction with the y-axis invariant.
(iv) $g(k x)=\underline{\sin k x}$.

$$
g\left(\frac{x}{k}\right)=\overline{\sin \left(\frac{x}{k}\right)}=
$$

The graph of $g(x)$ is also stretched by a factor of $1 / 2$ in the x-direction by the transformation $\sin 2 x$, with the y-axis invariant, and the graph of $g(x)$ is also stretched by a factor of 2 in the x-direction by the transformation $\sin \left(\frac{x}{2}\right)$, with the y-axis invariant, so the result in (iii) still applies:

$$
y=g(x)
$$

$$
y=g\left(\frac{x}{k}\right) \text { where } c=2
$$

5. (i)
(a) $-h(x)=-\left(x^{2}-1\right)=1-x^{2}$
(b) $p(-x)=(-x)^{2}-2(-x)=x^{2}+2 x$

(b) $y=p(x)$
(c) $y=-h(x)$

(d) $y=p(-x)$

(iii) the transformation of $y=h(x)$ which produces the graph of $y=-h(x)$, is $\underline{\mathbf{a}}$ reflection in the x-axis. The transformation of $y=p(x)$ which produces the graph of $y=p(-x)$, is a reflection in the \boldsymbol{y}-axis.
6. In summary:
(a) $f(x)+c$ is a translation (or shift) of c units in the positive y-direction.
(b) $f(x+c)$ is a translation (or shift) of c units in the negative x-direction.
(c) $k f(x)$ is a stretch of magnitude k in the y-direction with the x-axis invariant.
(d) $f(k x)$ is a stretch of magnitude $\frac{1}{k}$ in the x-direction with the y-axis invariant.
(e) $f\left(\frac{x}{k}\right)$ is a stretch of magnitude k in the x-direction with the y-axis invariant.
(f) $-f(x)$ is a reflection in the x-axis.
(g) $f(-x)$ is a reflection in the y-axis.

