The tangent function

Define a new function, $\tan (t)$, [short for tangent (t)] by using the wrapping function $\mathrm{W}(t)$ which we have already used when studying sine and cosine.

Definition of $\tan (t)$: On the unit circle, construct line l tangent to the circle at the point $(1,0)$. Find the point $W(t)$ on the unit circle and construct the line through the origin and $\mathrm{W}(t)$. Now find the intersection of this line and the tangent line l. We define $\tan (t)$ to be the second coordinate of this point of intersection.

While the definition can seem cumbersome when written down this way, it is actually quite easy to find $\tan (t)$. Here are two different cases, one with $W(t)$ in Quadrant I and the other with $\mathrm{W}(t)$ in Quadrant II.
$\mathrm{W}(t)$ in Quadrant I:

$\mathrm{W}(t)$ in Quadrant II

Note that if $W(t)$ is in Quadrant I, then $\tan (t)$ is positive and if $W(t)$ is in Quadrant II, $\tan (t)$ is negative.

Using the unit circle and the tangent line in the diagram on the following page(s), answer the following:

1. What is $\tan (0)$?
2. What is $\tan \left(\frac{\pi}{4}\right)$?
3. What is $\tan \left(\frac{\pi}{6}\right)$?
4. What is $\tan \left(\frac{\pi}{3}\right)$?
5. Explain why $\tan \left(\frac{\pi}{2}\right)$ is undefined. (Does not exist.)
6. Demonstrate why $\tan (t+\pi)=\tan (t)$ for all t for which $\tan (t)$ exists.
7. In what quadrant(s$)$ is $W(t)$ if $\tan (t)$ is positive?
8. In what quadrant(s) is $W(t)$ if $\tan (t)$ is negative?
9. On the axes provided, sketch the graph of $f(t)=\tan (t)$ for $-2 \pi \leq t \leq 2 \pi$.

Note that each the "tics" on the X -axis are $\pi / 2$ units apart and are 1 unit apart on the Y axis.

10. What is the Range of tan?
11. What is the Domain of tan?
12. What is the period of \tan ?
13. By using similar triangles, prove that $\tan (t)=\frac{\sin (t)}{\cos (t)}$ whenever $\cos (t) \neq 0$.

