A circle is the set of all points in a plane that are equidistant from a given point in the plane. Circles, angles, and arcs have many interesting characteristics. In this activity, you will explore relationships among different types of angles and arcs in a circle.

STEP 1

1. Drag point A or point C. Describe the changes that occur in the figure as you drag the point.

2. Angle AOC is called a central angle. Why do you think this is so?

An angle intercepts an arc of a circle if each endpoint of the arc is on a different ray of the angle and the other points of the arc are in the interior of the angle.

STEP 2

As you move point *A* or point *C*, the central angle $\angle AOC$ intercepts a minor arc *AC*. The measure of the minor arc equals the measure of the central angle. The larger remaining arc, *ABC*, is called a major arc.

3. a. Move point A or point C to help you complete the table.

∠AOC	arc AC	arc ABC	arc AC + arc ABC
50°	50°		
100°			
		250°	
(Choose an angle.)			

b. What is true about the measure of arc *AC* + arc *ABC*, the sum of the measures of the minor and major arcs?

- 4. In a circle, the measure of a central angle $\angle AOC$ is n° .
 - a. What is the measure of the minor arc that is intercepted by the central angle? How do you know?
 - b. What is the measure of the major arc? How do you know?

STEP 3

- 5. Angle *ABC* is called an inscribed angle because \overline{BA} and \overline{BC} are chords of the circle and vertex *B* is on the circle. Drag point *B* around the circle.
 - a. As point *B* is moved around the circle, what do you notice about the measure of $\angle ABC$?
 - b. Why does $m \angle ABC$ change when point *B* is moved from one arc to the other? Explain your reasoning.
 - c. Move point A or point C until $\angle ABC$ is a right angle. What is special about the arc and \overline{AC} ?