Worksheet IV

Making cold coffee

Cups of coffee	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	10
Ice cubes	$\mathbf{4}$	$\mathbf{8}$	\ldots	\ldots	\ldots

Worksheet V

V	I	$\frac{V}{I}$
20	4	$\ldots .$.
25	5	$\ldots .$.

$$
\left(\frac{V}{I}=R \ldots . \text { ohm's law }\right)
$$

Definition:
If $\frac{a}{b}=\frac{c}{d}$ then the numbers $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are in proportion
$\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d are respectively first, second, third and fourth proportional.
a and d are called extremes and b and c are called means.
If $\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=\cdots$ then $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \ldots$ said to be in proportion

- Continued proportion

Worksheet IV

Complete the table.

Sr. no.	\mathbf{p}	\mathbf{q}	\mathbf{r}	$\frac{\boldsymbol{p}}{\boldsymbol{q}}$ in the simplest form	$\frac{\boldsymbol{q}}{\boldsymbol{r}}$ in the simplest form
1	1	2	6		
2	4	16	64		
3	9	12	16		
4	3	5	6		

What do you observe in first and fourth example?
What do you observe in second and third example?
In second and third example $\frac{p}{q}=\frac{q}{r}$
In such cases we can say p, q, r are in continued propotion.
Definition:
a, b and c are said to be in continued proportion if $\frac{a}{b}=\frac{b}{c}$ i.e. $b^{2}=a c$ Here b is called as geometric mean (mean proportional) of a and c. Generalization:
a, b, c, d, e, \ldots are said to be in continued proportion
if $\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{e}=\ldots$

Activity

12 is the mean proportional of a and c as well as b and d. Complete the puzzle using different values of a, b, c, d.

- k-method

This method is simple method to solve some problems on equal ratios. In this method we assume each ratio is equal to k . Therefore the method is called as \mathbf{k}-methods.

