Physical interpretation and visualization.

- Active viewpoint (upper picture).
T is a linear transformation of the plane that maps the basis $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ onto another basis $\left\{\mathrm{v}_{1}, \mathbf{v}_{2}\right\}$. Its matrix $A=[T]$ is the same in either basis.
Every linear combination of the red vectors $\mathbf{v}=c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}$ is mapped to $T \mathbf{v}=c_{1} \mathbf{v}_{1}+c_{2} \mathrm{v}_{2}$.

- Passive viewpoint (bottom picture).

Every vector \mathbf{v} has two sets of coordinates:

$$
\mathbf{v}=x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}=y_{1} \mathbf{u}_{1}+y_{2} \mathbf{u}_{2} .
$$

Matrix A describes a change of coordinates:

$$
\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=A\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

We regard this as a linear transformation T^{*} on the space of linear functionals that transforms the green coordinate functionals to the red ones:

$$
T^{*}\left(X_{1}\right)=Y_{1}=a X_{1}+c X_{2}, \quad T^{*}\left(X_{2}\right)=Y_{2}=b X_{1}+d X_{2}, \quad \text { where } A=\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right]
$$

Given an inner product $\langle\cdot \mid \cdot\rangle$ on the plane, each linear functional F corresponds to a unique vector ∇F such that $F(\cdot)=\langle\nabla F \mid \cdot\rangle$.
Thus, we can regard T^{*} as the (adjoint) transformation of the plane.
If we choose an inner product such that the basis $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\}$ is orthonormal, then $\nabla X_{i}=\mathbf{v}_{i}$, and the matrix of T^{*} is A^{T}.

- Intuitively, if T represent a movement of a physical system (of a vector or family of vectors), the bottom picture describes the movement from the point of view of a "traveling" observer associated with the green basis.
That observer perceives the old (red) basis as moving backwards: $\mathbf{u}_{i}=T^{-1} \mathbf{v}_{i}$, while the change of the coordinate system (linear functionals and their gradients) is described by the adjoint transformation T^{*}.

Mathematical Details.

- Let $\mathcal{B}=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ be a basis in the vector space $V=\mathbb{R}^{2}$.

Denote by Y_{1}, Y_{2} the coordinate functionals $\mathbb{R}^{2} \rightarrow \mathbb{R}$ defined as follows: if $\mathbf{v}=y_{1} \mathbf{u}_{1}+y_{2} \mathbf{u}_{2}$, then $Y_{1}(\mathbf{v})=y_{1}$ and $Y_{2}(\mathbf{v})=y_{2}$. We visualize Y_{1} and Y_{2} via their level curves $Y_{i}(\mathbf{x})=$ const. These lines form a coordinate grid, shown in red.

- Let $A=\left[\begin{array}{ll}a & c \\ b & d\end{array}\right]$ be an invertible matrix. The vectors $\mathrm{v}_{1}=a \mathbf{u}_{1}+b \mathbf{u}_{2}$ and $\mathrm{v}_{2}=c \mathbf{u}_{1}+d \mathbf{u}_{2}$ form a basis \mathcal{C} in \mathbb{R}^{2}. The relation between the \mathcal{B} - and the \mathcal{C}-bases can be written in matrix form as

$$
\left[\begin{array}{ll}
\mathrm{v}_{1} & \mathrm{v}_{2}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{u}_{1} & \mathbf{u}_{2}
\end{array}\right]\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right]
$$

- Let T be the linear transformation of V, such that $T \mathbf{u}_{1}=\mathrm{v}_{1}$ and $T \mathbf{u}_{2}=\mathrm{v}_{2}$.

Clearly, the \mathcal{B}-matrix of T is A.
Moreover, the \mathcal{C}-matrix of T is also A, since

$$
[T]_{\mathcal{C}}=A[T]_{\mathcal{B}} A^{-1}=A\left(A A^{-1}\right)=A I=A
$$

- If $\mathbf{v}=x_{1} \mathbf{v}_{1}+x_{2} \mathbf{V}_{2}$ is any vector, then its (red) \mathcal{B}-coordinates are:

$$
\begin{aligned}
& Y_{1}(\mathbf{v})=x_{1} Y_{1}\left(\mathbf{v}_{1}\right)+x_{2} Y_{1}\left(\mathrm{v}_{2}\right)=x_{1} a+x_{2} c=\left[\begin{array}{ll}
a & c
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
& Y_{2}(\mathbf{v})=x_{1} b+x_{2} d=\left[\begin{array}{ll}
b & d
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] .
\end{aligned}
$$

- Let $\langle\cdot \mid \cdot\rangle$ be the inner product in V, such that the basis $\mathcal{C}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\}$ is orthonormal. Then,

$$
Y_{1}(\mathbf{v})=\left(a \mathbf{v}_{1}+c \mathbf{v}_{2}\right) \cdot \mathbf{v}
$$

and

$$
Y_{2}(\mathbf{v})=\left(b \mathbf{v}_{1}+d \mathrm{v}_{2}\right) \cdot \mathbf{v} .
$$

This implies that vectors $\mathrm{u}^{1}=a \mathrm{v}_{1}+c \mathrm{v}_{2}$ and $\mathrm{u}^{2}=b \mathrm{v}_{1}+d \mathrm{v}_{2}$ satisfy the following relations:

$$
\left\langle\mathbf{u}^{i} \mid \mathbf{u}_{j}\right\rangle=Y_{i}\left(\mathbf{u}_{j}\right)= \begin{cases}1 & \text { if } i=j \\ 0 & \text { otherwise }\end{cases}
$$

Moreover, for any vector \mathbf{x}, we have $Y_{i}(\mathbf{x})=\left\langle\mathbf{u}^{i} \mid \mathbf{x}\right\rangle$.

- Denote by T^{*} the linear transformation, such that $T^{*} \mathrm{v}_{i}=\mathbf{u}^{i}$. Then the \mathcal{C}-matrix of T^{*} is A^{T}.

