

We use following notations:
R - maximum range (horizontally)
T - total flight time
H - the maximum height of projectile
$(0, h)$ - launching point, level $h>0$
$(R, 0)$ - landing point, level 0 (ground level)
$V\left(\frac{r}{2}, H\right)$ - vertex of parabola (turning point)
$\left(\frac{r}{2}, 0\right)$ - projection of V on x-axis

We notice that total horizontal movement depends on $v_{0 x}, h, \theta$.

Finding range r

Vertical displacement: $y=h+v_{0 y} t-\frac{g t^{2}}{2}$ (uniformly accelerated motion, constant acceleration) Horizontal displacement: $x=v_{0 x} t$ (uniform motion, constant velocity) $\Rightarrow t=\frac{x}{v_{0 x}}$.

We replace t and we get $y=h+v_{0 y} \cdot \frac{x}{v_{0 x}}-\frac{g}{2} \cdot \frac{x}{v_{0 x}^{2}}$

But $v_{0 x}=v_{0} \cos \theta, v_{0 y}=v_{0} \sin \theta$ and replacing this above we get
$y=h+\operatorname{tg} \theta \cdot x-\frac{g}{2 v_{0}{ }^{2} \cos ^{2} \theta} \cdot x^{2}$.

We notice that line $y=h$ intersect parabola in two points $(0, h)$ and (r, h) with abscises $x=0$ and $x=r$, so 0 and r are roots of equation $\operatorname{tg} \theta \cdot x-\frac{g}{2 v_{0}^{2} \cos ^{2} \theta} \cdot x^{2}=0$. Solving equation we get $x=0$ and $x=\frac{\mathrm{v}_{0}{ }^{2} \sin 2 \theta}{g}$, so $r=\frac{\mathrm{v}_{0}{ }^{2} \sin 2 \theta}{g}$.

Finding time t

Movement is done when projectile is landing on ground, so $y=0$. We replace in vertical displacement equation and we notice that t is positive root of equation $-\frac{g t^{2}}{2}+v_{0 y} t+h=0$, so total flight time is $T=\frac{v_{0 y}+\sqrt{v_{0 y}{ }^{2}+2 g h}}{g}(*)$.

Let T_{r} displacement time to the point (r, h). Then $r=T_{r} \cdot v_{0 x}$, or $T_{r}=\frac{r}{v_{0 x}}$.
Replacing r and $v_{0 x}$ we get $T_{r}=\frac{v_{0}{ }^{2} \sin 2 \theta}{g v_{0 x}}=\frac{v_{0}{ }^{2} \cdot 2 \sin \theta \cos \theta}{g v_{0} \cos \theta}$, so $T_{r}=\frac{2 v_{0} \sin \theta}{g}$.

Finding maximum height H

The projectile reach maximum height H when $t=\frac{T_{r}}{2}$ (symmetry), $x=\frac{r}{2}, y=H$ and $v_{y}=0$. But $v_{y}=v_{0 y}-g t$, so $v_{0 y}=g t=\frac{g T_{r}}{2}$. Replacing in vertical displacement formula we get $H=h+g t \cdot t-\frac{g t^{2}}{2}$, so $H=h+\frac{g t^{2}}{2}$. But $t=\frac{v_{0} \sin \theta}{g}$, hence $H=h+\frac{v_{0}^{2} \sin ^{2} \theta}{2 g}(1)$.

From (1) we get $v_{0}{ }^{2} \sin ^{2} \theta=(H-h) 2 g$ or $v_{0 y}{ }^{2}=2 g(H-h)$, hence $v_{0 y}=\sqrt{2 g(H-h)}$.
Replacing $\quad v_{0 y} \quad$ in $\quad(*) \quad$ we get $\quad T=\frac{\sqrt{2 g(H-h)}+\sqrt{2 g(H-h)+2 g h}}{g}$, so $T=\frac{\sqrt{2 g H}+\sqrt{2 g(H-h)}}{g}(2)$.

From horizontal displacement formula $x=v_{0 x} \cdot t$ we get $R=v_{0} \cos \theta \cdot T$ or $R=\frac{v_{0} \cos \theta(\sqrt{2 g H}+\sqrt{2 g(H-h)})}{g}$ (3).

Then $v_{0}=\frac{R g}{\cos \theta(\sqrt{2 g H}+\sqrt{2 g(H-h)})}$ or $v_{0}=\frac{R(\sqrt{2 g H}-\sqrt{2 g(H-h)})}{2 g h \cos \theta}$
Let $\overrightarrow{v_{i}}=\overrightarrow{v_{i x}}+\overrightarrow{v_{i y}}$ velocity in point $(r-R, 0)$, and $\overrightarrow{v_{f}}=\overrightarrow{v_{f x}}+\overrightarrow{v_{f y}}$ velocity in point $(R, 0)$. From symmetry $\quad \overrightarrow{v_{i x}}=\overrightarrow{v_{f x}} \quad$ and $\quad \overrightarrow{v_{i y}}=-\overrightarrow{v_{f y}}$. Then $h=0 \quad$ and $\quad y=v_{f y} \cdot t-\frac{g t^{2}}{2}, \quad$ and $H=y_{\text {max }}=\frac{-\Delta}{4 a}=\frac{v_{f y}{ }^{2}}{2 g}$ hence $v_{f y}{ }^{2}=2 g H(5)$ or $v_{f y}=\sqrt{2 g H}$.

But $v_{f y}=v_{f} \sin \theta_{f}$ implies $v_{f} \sin \theta_{f}=\sqrt{2 g H}(6)$ or $v_{f}{ }^{2} \sin ^{2} \theta_{f}=2 g H$.
Horizontally there is uniform movement, so velocity projection on x -axis is constant $v_{f x}=v_{0 x}$ hence $v_{f} \cos \theta_{f}=\frac{R}{T}$. Replacing in (6) we get $\frac{R}{T} \tan \theta_{f}=\sqrt{2 g H}$ hence $\tan \theta_{f}=\frac{T \sqrt{2 g H}}{R}$ or $\theta_{f}=\arctan \left(\frac{T \sqrt{2 g H}}{R}\right)(7)$.

From (5) and (6) we get $v_{f}{ }^{2}=v_{f x}{ }^{2}+v_{f y}{ }^{2}=\left(\frac{R}{T}\right)^{2}+2 g H$, hence $v_{f}=\sqrt{\left(\frac{R}{T}\right)^{2}+2 g H}$ (8) or $v_{f}=\sqrt{v_{0}^{2} \cos ^{2} \theta+2 g H}\left(8^{\prime}\right)$.

