
Launching from positive h level and landing at ground level 

 

 

 

We use following notations: 

R  – maximum range (horizontally) 

T  – total flight time 

H  – the maximum height of projectile 

( )0, h  – launching point, level 0h >    

( ), 0R  – landing point, level 0 (ground level) 

,
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 – vertex of parabola (turning point) 

, 0
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 – projection of V  on x-axis 

We notice that total horizontal movement depends on 0 , ,xv h θ .  

 

 

 

 



Finding range r   

Vertical displacement: 
2

0 2y
gty h v t= + −  (uniformly accelerated motion, constant acceleration) 

Horizontal displacement: 0xx v t=  (uniform motion, constant velocity)
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0 02y

x x

x g xy h v
v v

= + ⋅ − ⋅   

But 0 0 0 0cos , sinx yv v v vθ θ= =  and replacing this above we get 
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We notice that line y h=  intersect parabola in two points ( )0, h  and ( ),r h  with abscises 0x =  

and x r= , so 0  and r  are roots of equation 2
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get 0x =  and 
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Finding time t   

Movement is done when projectile is landing on ground, so 0y = . We replace in vertical 

displacement equation and we notice that t  is positive root of equation 
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total flight time is  ( )
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Let rT  displacement time to the point ( ),r h . Then 0r xr T v= ⋅ , or 
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Replacing r  and 0xv  we get 
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Finding maximum height H   

The projectile reach maximum height H  when 
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rTt =  (symmetry), 
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rx = , y H=  and 0yv = . But 
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2

2
gtH h gt t= + ⋅ − , so 

2

2
gtH h= + . But 0 sinvt

g
θ

= , hence ( )
2 2

0 sin 1
2

vH h
g

θ
= + . 



From ( )1  we get ( )2 2
0 sin 2v H h gθ = −  or ( )2

0 2yv g H h= − , hence ( )0 2yv g H h= −  . 
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From horizontal displacement formula 0xx v t= ⋅  we get 0 cosR v Tθ= ⋅  or 
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Let i ix iyv v v= +
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 velocity in point ( ), 0r R− , and f fx fyv v v= +
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 velocity in point ( ), 0R . From 
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. Then 0h =  and 
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But sinfy f fv v θ=  implies ( )sin 2 6f fv gHθ =  or 2 2sin 2f fv gHθ = . 

Horizontally there is uniform movement, so velocity projection on x-axis is constant 0fx xv v=  hence
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From ( )5  and ( )6  we get 
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