Survey of Calculus

Exercise: Consider the function $f(x)=x^{3}+3 x^{2}+2$. Find the slope and equation of the tangent line at $x=2$.

Solution: We will use the formula for the slope of the tangent line, which states

$$
\text { Slope of Tangent }=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} .
$$

First, we find $f(x+h)$.

$$
\begin{aligned}
f(x+h) & =(x+h)^{3}+3(x+h)^{2}+2 \\
& =(x+h)(x+h)(x+h)+3(x+h)(x+h)+2 \\
& =\left(x^{2}+2 x h+h^{2}\right)(x+h)+3\left(x^{2}+2 x h+h^{2}\right)+2 \\
& =x^{3}+2 x^{2} h+x h^{2}+x^{2} h+2 x h^{2}+h^{3}+3 x^{2}+6 x h+3 h^{2}+2 \quad \text { combining like terms, } \\
& =x^{3}+3 x^{2} h+3 x h^{2}+h^{2}+3 x^{2}+6 x h+3 h^{2}+2 .
\end{aligned}
$$

Now, we find $f(x+h)-f(x)$. This should cancel out each term in $f(x)$.

$$
\begin{aligned}
f(x+h)-f(x) & =x^{3}+3 x^{2} h+3 x h^{2}+h^{2}+3 x^{2}+6 x h+3 h^{2}+2-\left(x^{3}+3 x^{2}+2\right) \\
& =x^{3}+3 x^{2} h+3 x h^{2}+h^{2}+3 x^{2}+6 x h+3 h^{2}+2-x^{3}-3 x^{2}-2 \\
& =3 x^{2} h+3 x h^{2}+h^{3}+6 x h+3 h^{2}
\end{aligned}
$$

You should be left with terms that each have a common factor of h. Factor this h out to cancel the denominator.

$$
\begin{aligned}
\frac{f(x+h)-f(x)}{h} & =\frac{3 x^{2} h+3 x h^{2}+h^{3}+6 x h+3 h^{2}}{h} \\
& =\frac{h\left(3 x^{2}+3 x h+h^{2}+6 x+3 h\right)}{h} \\
& =3 x^{2}+3 x h+h^{2}+6 x+3 h
\end{aligned}
$$

Now, we apply the limit.

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} & =\lim _{h \rightarrow 0} 3 x^{2}+3 x h+h^{2}+6 x+3 h \\
& =3 x^{2}+3 x(0)+(0)^{2}+6 x+3(0) \\
& =3 x^{2}+6 x
\end{aligned}
$$

Therefore, the slope of the tangent line is represented by $3 x^{2}+6 x$. Since we want to find the slope at $x=2$, we evaluate,

$$
3\left(2^{2}\right)+6(2)=3(4)+12=24
$$

So the slope of the tangent line at $x=2$ is 24 .
Now, to find the equation of the tangent line, we need two pieces of information: the slope, and an ordered pair on the line. Using $x=2$, we evaluate $f(2)$,

$$
\begin{aligned}
f(2) & =2^{3}+3\left(2^{2}\right)+2 \\
& =8+3(4)+2 \\
& =22 .
\end{aligned}
$$

We see that our ordered pair is $(2,22)$.

Now we have our two pieces of information we need to find the equation of the line. There are two ways to use this information. We can use point-slope form, or slope-intercept form. Usually, point-slope form is easier, but both will give the same answer.

Point-Slope Form

The formula for point-slope form is: $\left(y-y_{1}\right)=m\left(x-x_{1}\right)$, where $\left(x_{1}, y_{1}\right)$ is the ordered pair of a point on the line. In this case, $x_{1}=2, y_{1}=22$, and $m=24$. Plugging in, we have,

$$
\begin{aligned}
(y-22) & =24(x-2) & \text { first, distribute } 24 \text { across }(x-2) \\
y-22 & =24 x-48 & \text { now adding } 22 \text { to both sides }, \\
y & =24 x-26 &
\end{aligned}
$$

Thus, the equation of the line tangent to f at $x=2$ is represented by $y=24 x-26$.

Slope-Intercept Form

To utilize the point-slope formula, recall the form is: $y=m x+b$. We know that $x=2, y=22$, and $m=24$, so we are left solving for b in this case:

$$
\begin{aligned}
22 & =(24)(2)+b \\
22 & =48+b \\
-26 & =b
\end{aligned}
$$

$$
22=48+b \quad \text { subtracting } 48 \text { from both sides }
$$

Therefore, the point-slope form of the line tangent to f at $x=2$ is represented by $y=24 x-26$.

Notice these results are the same!

