1. Observe and Explore

Circle

13-. 1 Introduction :

Study of circle play very important role in the study of geometry as well as in real life. Path traced by satellite, preparing wheels of vehicle, gears of machines, rings, drawing designs etc. Many mathematics concepts get cleared and understands with the study of circle. It influences the mathematics that is taught and enhances students learning.

13.2. Observe and Explore. (Step - 1)

Task - 1. Different shapes of video. (Time - 5 Min.)
The aims of showing this video is to create interest of the student. by showing different shapes, teachers will ask the questions to the students.

Activities - 1.

1. Students you have seen different figures in video. Can you tell me what is the shape of the last figure which you have seen?
2. Teacher will ask so many questions on video clips and involve students in ''guided discussion'" that lead to concept of circle.

Activities - 2. Video clipe

Teacher will take students on the play ground and do the activities as shown in video clips. At the end teacher will ask the questions leading to the previous knowledge.

Teacher : What did you find in this clip?
Pushkar : Sir, I had seen wheel of cycle, car, auto riskshaw, bullock cart.

Teacher : How was their shape?

Pushkar	:	Sir, their shape are circuler.
Teacher	$:$	What you have seen in the ring of cycle?
Pushkar	$:$	I had seen spokes.
Teacher	$:$	All the spokes are of equal length?
Minu	$:$	Yes sir, All the spokes are of equal length.
Teacher	:	Equal length is called radius and mid point is called centre
of the circle.		

Task 3 : Worksheet from geogebra applet.

- Centre of circle
- Radius
- Diameter
- Chord

With the help this work sheet teacher will show all the related concept and at the end of the discussion finally lead to conclusion.

Task 4 : Slide (1) concept of Tangent. (P.P.t)

A

B
6
6

Teacher will explain concept of tangent with the help of a slide and define the tangent.

Slide-2

Teacher will explain the concept of touching circle with the help of slide and further define it.

Slide - 3 : Inscribed angle.

You can explore it using geogebra applet worksheet included in the slide. The concept of inscribed angle get cleared to student with the help of a worksheet.

Slide 4 : Intercepted arc.

Teacher ask the questions to the student with the help of above slide and explains the concept of intercepted arc.

Slide-5 : Geogebra worksheet.

Teacher will explain the property related to Inscribed angle and intercepted arc in the slide below.

Slide - 6
Geogebra work sheet is also included in this slide.

1) Circles passing through one point.

2) Circles passing through two distinct point.

3) One and only one circle is possible through three non collinear point.

1.3 Step - II

Define and Prove

Geogebra Worksheet

1. Radius drawn from point of contact is perpendicular to tangent.
2. A line is perpendicular to radius at its outer end is tangent to the circle.
3. Tangent drawn from same external point to same circle are equal.
4. If two circles touch each other then their point of contact lies on the line joining their centre.
5. Measure of inscribed angle is half of the intercepted arc.
6. Diameter subtends a right angle at a point on the circle.
7. Congruent chords subtends congruent angle ant the centre of a circle.
8. Opposite angles of a cyclic quadrilateral are supplementary.
9. Congruent chords are equidistant from the centre of a circle.
10. Chords subtending congruent angle at the centre are congruent.
11. Equidistant chords are congruent.
12. Segment joining the centre of circle and mid point of chord is perpendicular to the chord. (Proofs of all these theorems teacher uses geogebra book OR by placing the paper of different colour cut it with the help of scissor at proper place and proves the theorem)

3. Apply and Evaluate

Problem

1) A point P is 13 cm from the centre of a circle. The length of the tangent drawn from P to the circle is 12 cm , find the distance of point P from the nearest point of the circle.

Solution :

$\mathrm{PA} \perp \mathrm{OA}$
In Rt Δ OAP, By pytha. Theo.
$\mathrm{OA}^{2}=\mathrm{Op}^{2}-\mathrm{Ap}^{2}$
$=\quad 13^{2}-12^{2}$
$\mathrm{OA}^{2}=25$
$\mathrm{OA}=5$
Nearest point of circle from point P is B .

$\mathrm{PB}=\mathrm{OP}-\mathrm{OB}$
$=13-5$ \qquad $(\mathrm{OA}=\mathrm{OB}=\mathrm{r})$
$\mathrm{PB}=8 \mathrm{~cm}$
2) Prove that any four vertices of a regular pentagon lie on a circle.

Solution :

Join AC And BE
$\angle \mathrm{ABC}=\angle \mathrm{EAB} \ldots \ldots \ldots \ldots$. Angles of regular Polygon.
$\mathrm{BC}=\mathrm{AE} \ldots \ldots \ldots \ldots$ sides of regular
Polygon.
$\mathrm{AB}=\mathrm{AB} \ldots . . .$. Common side.
$\Delta \mathrm{ABC} \cong \Delta \mathrm{ABE} \ldots \ldots \ldots \ldots$. SAS test
$\angle \mathrm{ACB}=\angle \mathrm{AEB} \ldots$. C.A.C.t.
Points A, B, C, E lies on a circle. By Theorem two congruent angle on the same side of segment.
3) Consider the figure as shown.

Chord AB and CD of the circle Are produced to meet at ' O '

Prove that $\triangle \mathrm{ODB} \sim \triangle \mathrm{OAC}$.
Given $\mathrm{CD}=2 \mathrm{~cm}, \mathrm{DO}=6 \mathrm{~cm}$

And $\mathrm{BO}=3 \mathrm{~cm}$. Calculate AB .
Also find $\frac{\mathrm{A}(\square \mathrm{CABD})}{\mathrm{A}(\triangle \mathrm{CAD})}$

Solution :

In $\Delta \mathrm{OBD}$ and $\Delta \mathrm{OCA}$
$\angle \mathrm{OBD}=\angle \mathrm{ACO} \ldots \ldots . . \square \mathrm{ABDC}$ is cyclic, Exterior angle of cyclic quadrilateral .

$$
\begin{aligned}
& \text { Also } \angle \mathrm{AOC}=\angle \mathrm{BOD} \\
& \text { Common angle } \\
& \Delta \mathrm{OBD} \sim \Delta \mathrm{OCA} \ldots \ldots \ldots \ldots \ldots \ldots . \text {. A. A. Test } \\
& \frac{\mathrm{AO}}{\mathrm{DO}}=\frac{\mathrm{CO}}{\mathrm{BO}} \quad \therefore \quad \frac{\mathrm{AO}}{6}=\frac{8}{3} \begin{array}{c}
\ldots \ldots .(\mathrm{Do}=6, \mathrm{Bo}=3 \\
(\mathrm{Co}=\mathrm{CD}+\mathrm{DO}=2+6=8)
\end{array} \\
& \mathrm{AO}=16 \mathrm{~cm} \\
& \mathrm{AB}=\mathrm{AO}-\mathrm{BO}=16-3=13 \mathrm{~cm} \\
& \frac{\operatorname{ar}(\triangle \mathrm{DBO})}{\operatorname{ar}(\triangle \mathrm{CAO})}=\frac{(\mathrm{DO})^{2}}{(\mathrm{AO})^{2}}=\frac{(6)^{2}}{(16)^{2}}=\frac{(3)^{2}}{(8)^{2}}=\frac{9}{64} \\
& 64 \operatorname{ar}(\triangle \mathrm{DBO}) \quad=\quad 9 \operatorname{ar}(\triangle \mathrm{CAO}) \\
& 64\{\operatorname{ar}(\triangle \mathrm{CAO})-\operatorname{ar}(\square \mathrm{CABD})\}=9 \operatorname{ar}(\triangle \mathrm{CAO}) \\
& 55 \operatorname{ar}(\triangle \mathrm{CAO})=64 \operatorname{ar}(\square \mathrm{CABD}) \\
& \frac{\operatorname{Ar}(\square \mathrm{CABD})}{\operatorname{Ar}(\triangle \mathrm{CAO})}=\frac{55}{64}
\end{aligned}
$$

Que 4 A) $\triangle \mathrm{PQR}$ is drawn to circumscribed a circle of radius 4 cm Seg QR divides by point ' S ' in two parts RS \& QS of length 8 cm of 6 cm resp. Find side PQ \& PR

Solution :

$$
\begin{aligned}
\text { Let } \mathrm{PA} & =\mathrm{PB}=\mathrm{x} \\
\mathrm{a} & =\mathrm{x}+6 \\
\mathrm{~b} & =\mathrm{x}+8 \\
\mathrm{c} & =6+8=14 \\
\mathrm{~s} & =\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{2} \\
& =\frac{\mathrm{x}+6+\mathrm{x}+8+6+8}{2} \\
& =\frac{2 \mathrm{x}+28}{2}
\end{aligned}
$$

$$
\mathrm{S}=\mathrm{x}+14
$$

$$
\begin{align*}
\mathrm{A}(\Delta \mathrm{PQR}) & =\sqrt{\mathrm{S}(\mathrm{~S}-\mathrm{a})(\mathrm{S}-\mathrm{b})(\mathrm{S}-\mathrm{c})} \\
& =\sqrt{(\mathrm{x}+14)(\mathrm{x}+14-\mathrm{x}-6)(\mathrm{x}+14-\mathrm{x}-8)(\mathrm{x}+14-14)} \\
& =\sqrt{(\mathrm{x}+14) 8 \times 6 \times X} \\
\mathrm{~A}(\Delta \mathrm{PQR} & =\sqrt{48 \mathrm{x}(\mathrm{x}+14)} \ldots \ldots \ldots \ldots \ldots(1) \tag{1}
\end{align*}
$$

Now,

$$
\begin{align*}
\mathrm{A}(\triangle \mathrm{PQR}) & =\mathrm{A}(\Delta \mathrm{CQR})+\mathrm{A}(\Delta \mathrm{PCR})+\mathrm{A}(\Delta \mathrm{PCQ}) \\
& =1 / 2 \times 14 \times 4+1 / 2 \times(\mathrm{x}+8) \times 4+1 / 2 \times(\mathrm{x}+6) \times 4 \\
& =14 \times 2+(\mathrm{x}+8) \times 2+(\mathrm{x}+6) \times 2 \\
& =28+2 \mathrm{x}+16+2 \mathrm{x}+12 \\
\mathrm{~A}(\Delta \mathrm{PQR}) & =4 \mathrm{x}+56 \ldots \ldots \ldots \ldots \ldots(2) \tag{2}
\end{align*}
$$

From $1 \& 2$

$$
\sqrt{(x+14) \times 48 x} \quad=\quad 56+4 x
$$

Squaring both. Sides.

$$
\begin{aligned}
(x+14) \times 48 x & =(56+4 x)^{2} \\
(x+14) \times 48 x & =\frac{4^{2}(14+x)^{2}}{(x+14)} \\
48 x & =\frac{16(x+14)(x+14)}{(x)} \\
48 x & =16(x+14) \\
48 x & =16 x+224 \\
48 x & -16 x=224 \\
32 x & =224 \\
x & =\frac{224}{32}
\end{aligned}
$$

$$
\mathrm{x}=7
$$

$\therefore \quad \mathrm{PQ}=\mathrm{x}+6=7+6=13 \mathrm{~cm}$.

$$
\mathrm{PR}=\mathrm{x}+8=7+8=15 \mathrm{~cm}
$$

Questions figure :

5) TAR is a Tangent to the

Circle at A, If
$\angle \mathrm{BTA}=20^{\circ}$ and $\angle \mathrm{BAT}=28^{\circ}$
Find 1) $\angle D A R$

1) $\angle B C D$

Solution

Que 6) In $\triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ}$
A circle with $A B$ as a diameter is drawn to intersect side AC in point P . PQ is a

Tangent to the circle at point P .
Prove that PQ bisects side BC.

Solution

AB is diameter $\& \angle \mathrm{~B}=90^{\circ}$ \qquad given.
$\therefore \quad$ Line BC is tangent Line PQ is tangent given
$\therefore \quad P Q=B Q$
(1) tangent seg.
$\therefore \quad \angle \mathrm{QPB}=\angle \mathrm{QBP}=\mathrm{x}$ (say) $\ldots \ldots \ldots \ldots$. Base angles of iso triangle $\angle \mathrm{APB}=90^{\circ}$ \qquad subtended by diam.
$\therefore \quad \angle \mathrm{QPB}+\angle \mathrm{RPA}=90^{\circ}$ $\mathrm{X}+\angle \mathrm{RPA}=90^{\circ}$
$\therefore \quad \angle \mathrm{RPA}=90^{\circ}-\mathrm{X}$
$\angle \mathrm{RPA} \cong \angle \mathrm{CPQ}$------------ (Vertically opp. Angle)
$\therefore \quad \angle \mathrm{CPQ}=90^{\circ}-\mathrm{x}$
$\angle \mathrm{PQC}$ is an exte. Angle of $\triangle \mathrm{PQB}$.
$\therefore \quad \angle \mathrm{PQC} \quad=\quad \mathrm{x}+\mathrm{x}=2 \mathrm{x}$
In $\triangle \mathrm{PCQ}$
$\angle \mathrm{PCQ}+\angle \mathrm{CPQ}+\angle \mathrm{PQC}=180^{\circ}$
$\angle \mathrm{PCQ}+90-\mathrm{x}+2 \mathrm{x}=180^{\circ}$
$\angle \mathrm{PCQ}+90+\mathrm{x}=180^{\circ}$
$\angle \mathrm{PCQ}=180-(90+\mathrm{x})$
$\angle \mathrm{PCQ}=180-90-\mathrm{x}$
$\angle \mathrm{PCQ}=90-\mathrm{x}$

From 2 and 4

$$
\begin{aligned}
& \angle \mathrm{CPQ} \cong \angle \mathrm{PCQ} \\
\therefore \quad & \mathrm{CQ}=\mathrm{PQ} \ldots \ldots \ldots \ldots . \text { (5) side opp. To cong. Angles. }
\end{aligned}
$$

From $1 \& 5$
$B Q=C Q$,
$\therefore \quad$ Tangent PQ bisect the seg BC.

Step-3

Apply and Evaluate Unit Circle

Que 7) If $\mathrm{AB} \| \operatorname{Seg} \mathrm{CD}$ and O is the centre of circle, $\angle \mathrm{AOC}=40^{\circ}$
$m(\operatorname{arc} C E)=50^{\circ}$
$m(\operatorname{arc} E D)=60^{\circ}$
Find $\angle \mathrm{CED}$ and $\angle \mathrm{COD}$
Ans: $\angle \mathrm{AOC}+\angle \mathrm{COD}=$
180 \qquad Linear Pair angle
$40+\angle \mathrm{COD}=180$

$\angle \mathrm{COD}=180-40$
$\angle \mathrm{COD}=140$
$\angle \mathrm{COD} \cong \angle \mathrm{AOB}=140 \ldots \ldots \ldots .(\mathrm{V}-\mathrm{O}-\mathrm{A})$
$\therefore \quad \mathrm{m} \angle \mathrm{CED}=1 / 2 \mathrm{~m}(\operatorname{arc} \mathrm{CAD}) \ldots$ (Inscribed angle theo.)
$\mathrm{m}(\operatorname{arc} \mathrm{AC})=\mathrm{m}(\operatorname{arcBD})=40^{0}$
$\mathrm{m} \angle \mathrm{CED}=1 / 2[40+140+40]$
$=1 / 2[220]$
$\mathrm{m} \angle \mathrm{CED}=110$
8) A circle is inscribed in a $\triangle \mathrm{ABC}$ having side $8 \mathrm{~cm}, 10 \mathrm{~cm}$ and 12 cm as shown in the figure. Find AD, BE and CF.

Ans :

$$
\begin{aligned}
& \mathrm{AB}=8 \mathrm{~cm}, \quad \mathrm{BC}=10 \mathrm{~cm}, \quad \mathrm{AC}=12 \mathrm{~cm} \\
& \mathrm{AD}=\mathrm{AF} \\
& \mathrm{BD}=\mathrm{BE} \\
& \mathrm{CF}=\mathrm{CE} \\
& \mathrm{AD}+\mathrm{BD}+\mathrm{CF} \quad=\quad \mathrm{AF}+\mathrm{BE}+\mathrm{CE} \quad \text { Adding } \\
& \mathrm{AD}+\mathrm{BE}+\mathrm{CE} \quad=\quad \mathrm{AF}+\mathrm{CF}+\mathrm{BE} \\
& \mathrm{AD}+\mathrm{BC}=\mathrm{AC}+\mathrm{BE} \\
& \mathrm{AD}-\mathrm{BE}=12-\mathrm{BC} \\
& \mathrm{AD}-\mathrm{BE}=12-10 \\
& \mathrm{AD}-\mathrm{BD}=2 \\
& \mathrm{AD}-(\mathrm{AB}-\mathrm{AD})=2 \\
& \mathrm{AD}+\mathrm{AD}-\mathrm{AB}=2 \\
& 2 \mathrm{AD}=2+\mathrm{AB} \\
& 2 \mathrm{AD}=2+8 \\
& 2 \mathrm{AD}=10 \\
& \mathrm{AD}=5 \\
& \mathrm{AD}+\mathrm{BD}=\mathrm{AB} \\
& 5+\mathrm{BD}=8 \\
& \mathrm{BD}=8-5 \\
& \mathrm{BD}=3 \\
& \mathrm{BD}=\mathrm{BE}=3 \\
& \mathrm{AF}+\mathrm{FC}=\mathrm{AC} \\
& \mathrm{AD}+\mathrm{CF}=12 \\
& 5+\mathrm{CF}=12 \\
& \mathrm{CF}=12-5 \\
& \mathrm{CF}=7
\end{aligned}
$$

9) In fig. $\square \mathrm{PQRS}$ is cyclic trapezium If $\mathrm{PQ} \| \mathrm{SR}$, Then prove that $\mathrm{PS} \cong \mathrm{QR}$.

Proof : - Draw chord QS

In $\square \mathrm{PQRS}, \mathrm{PQ} \| \mathrm{SR}$ and QS is the transversal
$\therefore \quad \angle \mathrm{PQS} \cong \mathrm{RSQ} \ldots . . .$. (1) (Alternate angle)
Now, inscribe angle $\angle \mathrm{PQS}$ intercepted the arc PS
$\mathrm{m} \angle \mathrm{PQ}=1 / 2 \mathrm{~m}(\operatorname{arc} \mathrm{PS}) \ldots \ldots$ (2) (by inscribed angle Theorem)
Now, $m \angle R S Q=1 / 2 m(\operatorname{arc} Q R) \ldots \ldots(3)($ by inscribed angle Theorem)
From 1, 2 \& 3
$\mathrm{m}(\operatorname{arc} \mathrm{PS})=\mathrm{m}(\operatorname{arc} \mathrm{QR})$
$\operatorname{arc} \mathrm{PS} \cong \operatorname{arc} \mathrm{QR}$
Chord PS \cong Chord QR
(by definition of minor arc)
$\therefore \quad \mathrm{PS} \cong \mathrm{QR}$.
10) If all the sides of parallelogram touch a circle, show that the parallelogram is rhombus.

Given :

$\square \mathrm{ABCD}$ is a parallelogram
Pont P, Q, R, S are touching
Point of the circle.
To prove : $\square \mathrm{ABCD}$ is rhombus.

Proof : $\quad \square \mathrm{ABCD}$ is parallelogram \qquad Given.
$\therefore \quad \mathrm{AB}=\mathrm{DC}$
$\mathrm{AD}=\mathrm{BC}$

| AS | $=\mathrm{AP}$ |
| :--- | :--- | :--- |
| SD | $=\mathrm{DR}$ |
| BQ | $=\mathrm{BP}$ |
| QC | $=\mathrm{CR}$ |

Adding Both side.

$$
\begin{align*}
\mathrm{AS}+\mathrm{SD}+\mathrm{BQ}+\mathrm{QC} & =\mathrm{AP}+\mathrm{DR}+\mathrm{BP}+\mathrm{CR} \\
\mathrm{AD}+\mathrm{BC} & =\mathrm{AP}+\mathrm{BP}+\mathrm{DR}+\mathrm{RC} \\
\mathrm{AD}+\mathrm{BC} & =\mathrm{AB}+\mathrm{DC} \\
\mathrm{AD}+\mathrm{AD} & =\mathrm{AB}+\mathrm{AB} \ldots \ldots \ldots \ldots . \mathrm{By}(1) \\
2 \mathrm{AD} & =2 \mathrm{AB} \\
\mathrm{AD} & =\mathrm{AB} \ldots \ldots \ldots \ldots \ldots(2)
\end{align*}
$$

From (1) and (2)
$\square \mathrm{ABCD}$ is rhombus.
11) Two circles each with a radius of one unit and tangential to each other are inscribed in a 2 by 4 rectangle. A smaller circle is inscribed in the space between the circles \& the longer edge of the rectangle such that it is tangent to both circles and the edge of the rectangle. What is the radius of this smaller circle?

Solution :

Let radius of the smaller circle be r

$$
\begin{aligned}
& \mathrm{PQ}=1+\mathrm{r} \\
& \mathrm{PR}=1-\mathrm{r} \\
& \mathrm{QR}=1
\end{aligned}
$$

In $\mathrm{rt} \angle \mathrm{PRQ}$

$$
\begin{aligned}
\mathrm{PR}^{2}+\mathrm{QR}^{2} & = \\
(1-\mathrm{r})^{2}+1^{2}= & \mathrm{PQ}^{2} \ldots \ldots \ldots \ldots \ldots . . \\
1-2 \mathrm{r}+\mathrm{r}^{2}+1 & =1+\mathrm{r})^{2} \\
4 \mathrm{r} & =1+2 \mathrm{r}+\mathrm{r}^{2} \\
\mathbf{r} & =1 / 4
\end{aligned}
$$

12) The radii of two concentric circle are $13 \mathrm{~cm} \& 8 \mathrm{~cm}$. AB is a diameter of the bigger circle. BD is a tangent to the smaller circle touching it at D then find length AD.

Solution :

Join AE \& AD
$\mathrm{OD} \perp \mathrm{BE}$
Tangent radius properly
$\angle \mathrm{AEB}=90$ \qquad Properties of diamenter

In $\triangle \mathrm{BOD} \& \triangle \mathrm{BAE}$
$\angle \mathrm{B} \cong \angle \mathrm{B}$ \qquad common angle

$$
\begin{array}{rlrl}
\angle \mathrm{ODB} & \cong \angle \mathrm{AEB} \ldots \ldots \ldots \ldots \ldots \text { each } 90^{\circ} \\
\therefore \quad \Delta \mathrm{BOD} & \sim \Delta \mathrm{BAE} \ldots \ldots \ldots \ldots \text { A. A. test } \\
& & \frac{\mathrm{BO}}{\mathrm{BA}} & =\frac{\mathrm{OD}}{\mathrm{AE}} \ldots \ldots \ldots . \text { corr. Side of } \sim \Delta \\
\frac{13}{26} & =\frac{8}{\mathrm{AE}} \\
\mathrm{AE} & =\frac{26 \times 8}{13}
\end{array}
$$

$$
\mathrm{AE}=16
$$

In rt $\angle \Delta \mathrm{BDO}$
$\mathrm{OB}^{2}=\mathrm{OD}^{2}+\mathrm{BD}^{2}$ \qquad pythagorous thm.
$13^{2}=8^{2}+\mathrm{BD}^{2}$
$\mathrm{BD}^{2}=169-64$
$\mathrm{BD}^{2}=105 \quad \rightarrow \quad \mathrm{BD}=\sqrt{105} \mathrm{~cm}$

In rt $\angle \Delta \mathrm{AED}$

$$
\begin{aligned}
\mathrm{AD}^{2} & =\mathrm{AE}^{2}+\mathrm{DE}^{2} \\
& =16^{2}+(\sqrt{105})^{2} \\
& =256+105 \\
\mathrm{AD}^{2} & =361 \\
\mathrm{AD} & =19 \mathrm{~cm}
\end{aligned}
$$

13) A square with a side length 20 has two vertices on the circle and one side touching the circle. Find the diameter of the circle.

Solution :

Let radius $=\mathrm{r}$
Join OD, OA, ON
Draw $\mathrm{OM} \perp \mathrm{AD}$
$\mathrm{AM}=\mathrm{MD}=10 \quad\left[\perp^{\text {er }}\right.$ drown from centre to the chord bisect chord $]$
$\mathrm{OM}=\mathrm{MN}-\mathrm{ON}$
$=20-\mathrm{r}$
In rt $\angle \Delta \mathrm{AOM}$
$\mathrm{AM}^{2}+\mathrm{MO}^{2}=\mathrm{AO}^{2} \ldots \ldots \ldots \ldots .$. By pythagorous thm
$10^{2}+\left(20-r^{2}\right)=r^{2}$
$100+400-40 r+r^{2}=r^{2}$
$\therefore 40 \mathrm{r}=500$
$r=\frac{500}{40}$
$\mathrm{r}=12.5 \mathrm{~cm}$
diameter $=2 \mathrm{r}$
$=\quad 2 \times 12.5=25 \mathrm{~cm}$
14) If $\angle \mathrm{POQ} \cong \angle \mathrm{ROS}, \quad \mathrm{SR} \| \mathrm{PQ}$. Dimeter of circle

Is 26 cm and length of chord is 24 cm then what is perpendicular distance between two chord.

Solution :

$\mathrm{PM}=1 / 2 \mathrm{PQ} \ldots \ldots$ (Perpendicular drawn from centre of circle To the chord)

PM $=1 / 2 \times 24 \ldots \ldots \ldots .($ Length of chord $=24 \mathrm{~cm})$

$$
\mathbf{P M}=12
$$

$$
\begin{aligned}
\mathrm{OP}=\mathrm{OR} & =1 / 2 \mathrm{PR} \ldots \ldots . .(\text { length of diameter }=26) \\
& =1 / 2 \times 26 \\
& =13
\end{aligned}
$$

In right $\ldots \ldots$.... angle $\triangle \mathrm{OPQ}$, by PGT
$\mathrm{OP}^{2}=\mathrm{PM}^{2}+\mathrm{OM}^{2}$
$13^{2}=12^{2}+\mathrm{OM}^{2}$
$\mathrm{OM}^{2}=13^{2}-12^{2}$
$\mathrm{OM}^{2}=169-144$
$\mathrm{OM}^{2}=25$
$\mathrm{OM}=5$
Similarly, ON = 5

$$
\begin{aligned}
& \mathrm{O}-\mathrm{M}-\mathrm{N} \\
& \mathrm{MN}=\mathrm{OM}+\mathrm{ON}=5+5=10
\end{aligned}
$$

15) In the fig. $P Q$ is the tangent at a point R of the circle with centre O . If $\angle \mathrm{TRQ}=30^{\circ}$

Find the $\angle \mathrm{PRS}, \angle \mathrm{SRT}$,
 $\angle \mathrm{ROT}, \angle \mathrm{ORT}, \angle \mathrm{STA}$

```
Ans: m \(\angle\) TRQ \(=30 \ldots \ldots\). (Given)
    \(\mathrm{m} \angle \mathrm{SRT}=90^{\circ} \ldots \ldots\). ( Angle in semicircle)
    \(\mathrm{m} \angle \mathrm{SRQ}=\mathrm{m} \angle \mathrm{SRT}+\mathrm{m} \angle \mathrm{TRQ}\)
            \(=\quad 90+30\)
    \(\mathrm{m} \angle \mathrm{SRQ}=120^{0}\)
    \(\mathrm{m} \angle \mathrm{PRS}=180-120=60^{\circ}\) ( Linear pair angle)
    \(\mathrm{m} \angle \mathrm{TRQ}=1 / 2 \mathrm{~m}(\operatorname{arc} \mathrm{RT}) \ldots .\). Tangent secant theorem.
        \(30=1 / 2 \mathrm{~m}(\operatorname{arc} \mathrm{RT})\)
    \(\mathrm{m}(\operatorname{arc} R T)=60^{0} \ldots \ldots \ldots\). Def \(^{\mathrm{n}}\) of minor arc.
    \(\mathrm{m} \angle \mathrm{RST} \quad=\quad 1 / 2 \mathrm{~m}(\operatorname{arc} \mathrm{RT}) \ldots \ldots\). ( inscribe angle theo.)
        \(=\quad 1 / 2 \times 60\)
    \(\mathrm{m} \angle \mathrm{RST}=30\)
    \(\mathrm{m} \angle \mathrm{STA}=\mathrm{m} \angle \mathrm{RST}+\mathrm{m} \angle \mathrm{SRT} \ldots . .\). Remote interior
                                    angle theorem
    \(\mathrm{m} \angle \mathrm{STA}=30+90\)
    \(\mathbf{m} \angle\) STA \(=\mathbf{1 2 0} \quad \mathrm{m} \angle \mathrm{PRS}=\mathrm{m} \angle \mathrm{RTO}=60^{\circ}\)
```

 In \(\triangle \mathrm{ORT}, \quad \mathrm{OR}=\mathrm{OT} \ldots \ldots .\). (Raddi of same circle)
 \(\mathrm{m} \angle \mathrm{ORT}=\mathrm{m} \angle \mathrm{OTR}=60^{\circ}\)
 \(\mathrm{m} \angle \mathrm{ORT}=60^{\circ}\)
 \(\mathrm{m} \angle \mathrm{PRS}=60^{\circ}, \quad \mathrm{m} \angle \mathrm{SRT}=90^{\circ}, \quad \mathrm{m} \angle \mathrm{ROT}=60^{\circ}\)
 \(\mathrm{m} \angle \mathrm{ORT}=60^{\circ}, \quad \mathrm{m} \angle \mathrm{STA}=120^{\circ}\)
 16) In the two concentric circle a chord of larger circle become a tangent to the smaller circle whose radius is 10 cm and radius of smaller circle is 6 cm . Find the length of tangent to the smaller circle.

Solution :

OT \perp Chord AB $\ldots \ldots \ldots .$. (Tangent is perpendicular radius)
$\mathrm{AT}=\mathrm{TB} \ldots \ldots .$. (A perpendicular drawn from the centre of Cirle to the chord bisect chord)
$\mathrm{OA}=10 \mathrm{~cm} \& \mathrm{OT}=6 \mathrm{~cm}$
In right angle \triangle OTA,
By PGT
$\therefore \quad \mathrm{OA}^{2}=\mathrm{OT}^{2}+\mathrm{AT}^{2}$
$\therefore \quad 10^{2}=6^{2}+\mathrm{AT}^{2}$
$\therefore 10=36+\mathrm{AT}^{2}$
$\therefore \quad \mathrm{AT}^{2}=100-36$
$\therefore \quad \mathrm{AT}^{2}=64$
$\therefore \quad$ AT $=\mathbf{8}$
$\therefore \quad \mathrm{AB}=2 \mathrm{AT}$
$\therefore \quad \mathrm{AB}=2 \times 8$
$\therefore \quad \mathrm{AB}=16 \mathrm{~cm}$
Length of chord of circle tangent to the smaller circle $=16 \mathrm{~cm}$.
17) A circle touches the side of a quadrilatral $A B C D$ at point P, Q, R, S respectively. Show that the angle subtended at the centre and angle form at opposite vertex are supplementary.

Ans :

Given : In \square ABCD

Point $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}$ are touching
Point of the circle.
To prove : $\angle \mathrm{SOR}+\angle \mathrm{SDR}=180^{\circ}$
Construction : Joint OS and OR.
Proof: O is the centre of the circle

Radius $\mathrm{OS} \perp$ tangent $\mathrm{AD} \therefore \angle \mathrm{OSD}=90^{\circ}$
Radius $\mathrm{OR} \perp$ tangent $\mathrm{DC} \therefore \angle \mathrm{ORD}=90^{\circ}$
$\angle \mathrm{OSD}+\angle \mathrm{ORD}=90+90$
$\angle \mathrm{OSD}+\angle \mathrm{ORD}=180$
In \square ORDS

$$
\begin{aligned}
& \angle \mathrm{SOR}+\angle \mathrm{ORD}+\angle \mathrm{OSD}+\angle \mathrm{SDR}=360 \\
& \angle \mathrm{SOR}+\angle \mathrm{SDR}+180=360 \\
& \angle \mathrm{SOR}+\angle \mathrm{SDR}=360-180 \\
& \angle \mathrm{SOR}+\angle \mathrm{SDR}=180
\end{aligned}
$$

18) Problem : An Exploration $A B$ is a line tangent and M is the midpoint semicircle are drawn with AM, MB and

AB as diameters on the same side of line $A B$. A circle with centre O and radius r is drawn so that It touches all the three semicircles.

Prove that: $r=1 / 6 \mathrm{AB}$

Solution :

Let L, N be the midpoint of AM, MB
resp. Let circle c (o,r) touch the semicircle
with centre $\mathrm{L}, \mathrm{M}, \mathrm{N}$ at $\mathrm{P}, \mathrm{R}, \mathrm{Q}$ resp.
Join OL, ON, MR. Points $\mathrm{O}-\mathrm{Q}-\mathrm{N}$,
$\mathrm{O}-\mathrm{P}-\mathrm{L}, \mathrm{R}-\mathrm{O}-\mathrm{M}$
Let $\mathrm{AB}=\mathrm{x}$
$\mathrm{OL}=\mathrm{r}+{ }^{\mathrm{x}} / 4($ since $\mathrm{PL}=\mathrm{LM}=\mathrm{x} / 4)$ and $\mathrm{ON}=\mathrm{r}+\mathrm{x} / 4$
$\therefore \triangle \mathrm{OLN}$ is isosceles and M is midpoint of base
LN and $\mathrm{OM} \perp \mathrm{LN}$.
$\triangle \mathrm{OML}$ is right triangle.
$\mathrm{OL}^{2}=\mathrm{OM}^{2}+\mathrm{LM}^{2}$
OR $(r+x / 4)^{2}=(R M-r)^{2}+(x / 4)^{2}$

$$
\begin{aligned}
& (\mathrm{r}+\mathrm{x} / 4)^{2}=(\mathrm{x} / 2-\mathrm{r})^{2}+(\mathrm{x} / 4)^{2} \\
& \mathrm{r}^{2}+\mathrm{rx} / 2+\mathrm{X}^{2} / 16=\mathrm{X}^{2} / 4+\mathrm{r}^{2}-\mathrm{rx}+\mathrm{X}^{2} / 16 \\
& 3 \mathrm{rx} / 2=\mathrm{X}^{4} / 4 \\
& \mathrm{r}=\mathrm{x} / 6=1 / 6 \mathrm{AB} \\
& \mathrm{r}=\mathbf{1} / \mathbf{6} \mathbf{~ A B}
\end{aligned}
$$

19) In the fig. Two circle touches each other externally and third one is touches to the second circle externally. Point A is exterior point, $A B, A C, A D$ and AE are tangents to the respective circles. If $\mathrm{AB}=4 \mathrm{~cm}$, radii of circles are $3 \mathrm{~cm}, 2 \mathrm{~cm}$ and 5 cm respectively. Find AQ AR and AP.

Solution

$$
\begin{aligned}
& \mathrm{AB}=\mathrm{AC}=4 \ldots \ldots \ldots \ldots .(\text { by thm }) \\
& \mathrm{AC}=\mathrm{AD}=4 \\
& \mathrm{AD}=\mathrm{AE}=4
\end{aligned}
$$

In $\triangle \mathrm{ABP}$, by PGT
$\mathrm{AP}^{2}=\mathrm{AB}^{2}+\mathrm{PB}^{2}$
$\mathrm{AP}^{2}=4^{2}+3^{2}$
$\mathrm{AP}^{2}=16+9$
$\mathrm{AP}^{2}=25$
$\therefore \mathbf{A P}=5$

In right angle $\triangle \mathrm{ACQ}$, by PGT

$$
\begin{aligned}
& \mathrm{AQ}^{2}=\mathrm{AC}^{2}+\mathrm{QC}^{2} \\
& \mathrm{AQ}^{2}=4^{2}+2^{2} \\
& \mathrm{AQ}^{2}=16+4=20 \\
& \mathrm{AQ}=\sqrt{20}
\end{aligned}
$$

In right angle $\Delta \mathrm{ADR}$
$\mathrm{AR}^{2}=\mathrm{AD}^{2}+\mathrm{DR}^{2}$
$\mathrm{AR}^{2}=4^{2}+5^{2}$
$\mathrm{AR}^{2}=16+25$
$\mathrm{AR}^{2}=41$
$\mathrm{AR}=\sqrt{41}$
20) In fig. AD is a diameter O is the centre of the circle. Diameter $\mathrm{AD} \|$ chord $\mathrm{BC} . \angle \mathrm{CBD}=32^{2}$, then find
i) $\angle \mathrm{OBD}$
ii) $\angle \mathrm{AOB}$
iii) $\angle \mathrm{BED}$

Solution : In $\operatorname{big} \mathrm{AD} \| \mathrm{BC}$.
$\therefore \angle \mathrm{ODB} \cong \angle \mathrm{CBD} \quad(\therefore$ alternate angles made by transversal)
$\therefore \angle \mathrm{ODB}=32^{\circ}$
$\therefore \angle \mathrm{OBD}=\mathrm{ODB}$ \qquad (\therefore opposite angles of congruent sides of iso Δ)
$\therefore \angle \mathrm{OBD}=32^{0}$
(1)

In $\triangle \mathrm{BOD}$
$\angle \mathrm{BOD}+\angle \mathrm{OBD}+\angle \mathrm{ODB}=180^{\circ} \ldots(\therefore$ sum of $\angle \mathrm{a} \Delta)$
$\angle \mathrm{BOD}+32+32=180^{\circ}$
$\angle \mathrm{BOD}=180-64$
$\angle \mathrm{BOD}=116^{0}$
Now $\angle \mathrm{AOB}+\angle \mathrm{BOD}=180^{\circ}$ (\therefore linear pair $)$
$\angle \mathrm{AOB}+116^{\circ}=180^{\circ}$
$\angle \mathrm{AOB}=180-116^{0}$
$\angle \mathrm{AOB}=64^{\circ}$
$\mathrm{m}(\operatorname{arc} \mathrm{BCD})=\mathrm{m} \angle \mathrm{BOD}$ \qquad (central angle)
$\mathrm{m}(\operatorname{arc} \mathrm{BCD})=116^{0}$

$$
\begin{align*}
\text { Now } \angle \mathrm{BED} & =1 / 2 \mathrm{~m}(\operatorname{arc} \mathrm{BCD}) \ldots \ldots \ldots(\therefore \text { inscribed angle }) \\
& =1 / 2 \times 116^{0} \\
\therefore \angle \mathrm{BED} & =68^{0} \ldots \ldots \ldots \ldots \ldots .(3) \tag{3}
\end{align*}
$$

i) $\angle \mathrm{OBD}=32^{\circ}$,
ii) $\angle \mathrm{AOB}=64^{\circ}$,
iii) $\angle \mathrm{BED}=58^{\circ}$
21) From figure find value of a, b, c

Solution :

In $\triangle \mathrm{AEC}, \mathrm{m} \angle \mathrm{A}+\mathrm{m} \angle \mathrm{E}+\mathrm{m} \angle \mathrm{C}=180^{\circ}$ \qquad (angle sum property)
$62^{0}+\mathrm{m} \angle \mathrm{AEC}+43^{0}=180^{\circ}$

$$
\begin{aligned}
\mathrm{m} \angle \mathrm{AEC} & =180-105 \\
\mathrm{~m} \angle \mathrm{AEC} & =75^{\circ}
\end{aligned}
$$

Now, \square ABDE is cyclic quadrilateral
$\mathrm{m} \angle \mathrm{A}=\mathrm{m} \angle \mathrm{EDF}=62^{\circ} \ldots$ (Exterior angle of cyclic quadrilateral)

$$
C=6^{\mathbf{0}}
$$

In $\square \mathrm{ABDE}$,

$$
\begin{aligned}
& \mathrm{m} \angle \mathrm{~B}+\mathrm{m} \angle \mathrm{AED}=180^{\circ} \ldots .(\text { opp.angle of cyclic quadrilateral }) \\
& \mathrm{a}+75=180 \\
& \mathrm{a}=180-75 \\
& \mathbf{a}=\mathbf{1 0 5}^{\mathbf{0}}
\end{aligned}
$$

In $\triangle \mathrm{ABF}$

$$
\begin{aligned}
& \mathrm{m} \angle \mathrm{~A}+\mathrm{m} \angle \mathrm{~B}+\mathrm{m} \angle \mathrm{AFB}=180 \ldots \ldots(\text { Angle sum property }) \\
& 62+105^{0}+\mathrm{b}=180^{0} \\
& 167+\mathrm{b}=180 \\
& \mathrm{~b}=180-167 \\
& \mathbf{b}=\mathbf{1 3}^{0}
\end{aligned}
$$

$$
\mathrm{A}=105^{0}, \quad \mathrm{~b}=13^{0}, \quad \mathrm{C}=62^{0}
$$

2. Define and Prove

