These directions accompany Behind the Scenes: Inscribed Angle Theorem Corollary (2).

Before you begin, it's important to note that $A^{\prime}$ ' is already defined the same way we defined it within Behind the Scenes: Slider Exercise 1.

That is,

$$
A^{\prime}=\operatorname{Dilate}[A, i f[0<a<=1,1-a, 0], B]
$$

Let's go!

1) Construct a vector with initial point $A$ and terminal point $A^{\prime}$.

2) Translate sector $q$ by vector $w$. Note the image of this sector has label $q$ '.

After doing so, hide point $\mathbf{A}^{\prime}$.


As the slider a moves from $\mathrm{a}=0$ to $\mathrm{a}=1$, the applet will translate sector q from point $A$ to point $B$ (by displaying $q^{\prime}$ ). Next we will place our focus on rotating $q$ ' about $B$ through the appropriate angle (as a moves from $\mathrm{a}=1$ to $\mathrm{a}=2$.)
3) Here it is first imperative to determine the angle through which to rotate q' about $B$. To do this, start by constructing a line through $B$ that is parallel to segment $f$.

4) Plot a point on this line (parallel to f) you've just constructed somewhere "below" B.

5) Use the Angle tool to measure and display angle CBE.

6) In the Input Bar, type this:

Input: Rotate[ $q^{\prime}$, if[1<a<=2, $\left.\left.-(a-1) \varepsilon,-\varepsilon\right], B\right]$

Note the negative sign in the then and else slots due to the clockwise rotation.
You could also achieve the same effect w/positive signs and replacing $\varepsilon$ with ( $2 p i-\varepsilon$ ).
7) If you now slide the slider all the way to $a=2$, you will find q" (rotation of q' as defined above) to rotate perfectly into the other inscribed angle with vertex $B$.


## Behind the Scenes: Inscribed Angle Theorem Corollary (2)

7) Final Touches:

Vector w: hide object (if you prefer)

Sector q' : Condition to Show Object: $0<a<=1$.
Sector q" Condition to Show Object: a > 1
Angle $\varepsilon \quad$ Hide Object
You can hide all labels of all objects if you prefer.
8) That's it!

For more illustrations without words, click here.

