RICHIAMI DI ALGEBRA

LE EQUAZIONI DI SECONDO GRADO

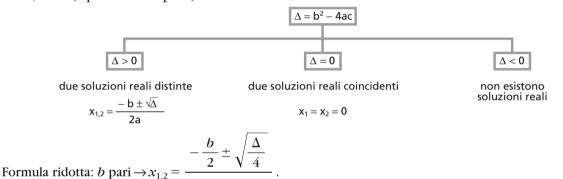
Un'equazione di secondo grado è riconducibile alla forma normale: $ax^2 + bx + c = 0$, $a \ne 0$

se
$$-\frac{c}{a} < 0$$
: impossibile

$$b = 0, c \neq 0 \text{ (equazione pura)} \rightarrow ax^2 + c = 0 \rightarrow x^2 = -\frac{c}{a}$$

$$\sec -\frac{c}{a} > 0 \rightarrow x_{1,2} = \pm \sqrt{-\frac{c}{a}}$$

- $c = 0, b \neq 0$ (equazione spuria) $\rightarrow ax^2 + bx = 0 \rightarrow x(ax + b) = 0 \rightarrow x_1 = 0, x_2 = -\frac{b}{a}$
- b = c = 0 (equazione monomia) $\rightarrow ax^2 = 0 \rightarrow x_1 = x_2 = 0$
- $b \neq 0$, $c \neq 0$ (equazione completa). Il discriminante è $\Delta = b^2 4ac$.



LE DISEQUAZIONI DI SECONDO GRADO

Per risolvere le disequazioni $ax^2 + bx + c > 0$ e $ax^2 + bx + c < 0$ (con a > 0), si considera l'equazione associata $ax^2 + bx + c = 0$.

Se $\Delta > 0$, la disequazione:

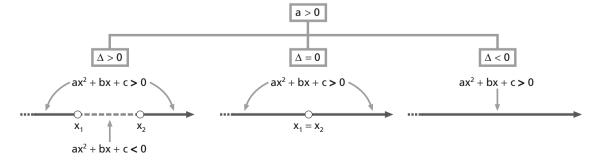
- $ax^2 + bx + c > 0$ è verificata dai valori esterni all'intervallo individuato dalle radici dell'equazione associata;
- $ax^2 + bx + c < 0$ è verificata dai valori interni.

Se $\Delta = 0$, la disequazione:

- $ax^2 + bx + c > 0$ è sempre verificata tranne che per il valore della radice doppia dell'equazione associata;
- $ax^2 + bx + c < 0$ non è mai verificata.

Se $\Delta < 0$, la disequazione:

- $ax^2 + bx + c > 0$ è sempre verificata;
- $ax^2 + bx + c < 0$ non è mai verificata.



LE EQUAZIONI E LE DISEQUAZIONI CON IL VALORE ASSOLUTO

$$|A(x)| = k$$

$$|A(x)| = k$$

$$\sec k \ge 0: A(x) = \pm k$$

$$\sec k \ge 0: -k < A(x) < k \implies \begin{cases} A(x) > -k \\ A(x) < k \end{cases}$$

$$|A(x)| < k$$

$$\sec k \le 0: \text{ non ha soluzione}$$

$$\sec k \ge 0: A(x) < -k \lor A(x) > k$$

$$|A(x)| > k$$

$$\sec k \ge 0: A(x) \ne 0$$

$$\sec k \le 0: \text{ sempre verificata}$$

LE EQUAZIONI E LE DISEQUAZIONI IRRAZIONALI

se
$$n$$
 è dispari: $A(x) = [B(x)]^n$
se n è pari:
$$\begin{cases} A(x) \ge 0 \\ B(x) \ge 0 \\ A(x) = [B(x)]^n \end{cases}$$

se
$$n$$
 è dispari: $A(x) < [B(x)]^n$
se n è pari:
$$\begin{cases} A(x) \ge 0 \\ B(x) > 0 \\ A(x) < [B(x)]^n \end{cases}$$

se
$$n$$
 è dispari: $A(x) > [B(x)]^n$

$$\sup_{x \in n} A(x) > B(x)$$
se n è pari:
$$\begin{cases} B(x) < 0 \\ A(x) \ge 0 \end{cases} \begin{cases} B(x) \ge 0 \\ A(x) > [B(x)]^n \end{cases}$$

LE PROPRIETÀ DELLE POTENZE

•
$$a^m \cdot a^n = a^{m+n}$$

•
$$a^m : a^n = a^{m-n} \cos a \neq 0$$

•
$$(a^m)^n = a^{m \cdot n}$$

•
$$a^m \cdot b^m = (a \cdot b)^m$$

•
$$a^m : b^m = (a : b)^m \text{ con } b \neq 0$$

•
$$a^{-n} = \frac{1}{a^n} \operatorname{con} \ a \neq 0$$

I PRODOTTI NOTEVOLI E LA SCOMPOSIZIONE IN FATTORI

•
$$(A + B)(A - B) = A^2 - B^2$$

•
$$(A \pm B)^2 = A^2 \pm 2AB + B^2$$

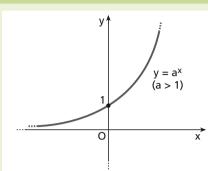
•
$$(A+B+C)^2 = A^2 + B^2 + C^2 + 2AB + 2AC + 2BC$$

•
$$(A \pm B)^3 = A^3 \pm 3A^2B + 3AB^2 \pm B^3$$

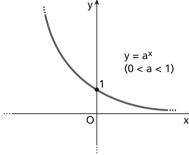
•
$$A^3 \pm B^3 = (A \pm B)(A^2 + AB + B^2)$$

LA FUNZIONE ESPONENZIALE E LA FUNZIONE LOGARITMO

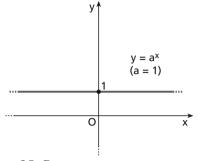
La funzione esponenziale



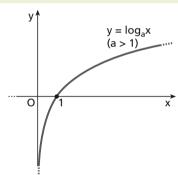
- a. C.E.: ℝ; codominio: ℝ⁺; funzione crescente in ℝ; corrispondenza biunivoca;
 - $a^x \to 0$ per $x \to -\infty$; $a^x \to +\infty$ per $x \to +\infty$.



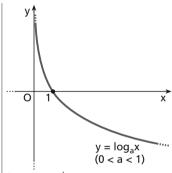
- **b.** C.E.: \mathbb{R} ; codominio: \mathbb{R}^+ ;
 - funzione decrescente in ℝ;
 corrispondenza biunivoca;
 a^x → 0 per x → +∞;
 a^x → +∞ per x → -∞.



- **c.** C.E.: ℝ; codominio: {1};
- funzione costante;
- funzione non iniettiva.
- La funzione logaritmo



- a. C.E.: ℝ+;
 - codominio: ℝ;
 - funzione crescente in ℝ⁺;
 - corrispondenza biunivoca;
 - $\log_a x \to -\infty$ per $x \to 0$; $\log_a x \to +\infty$ per $x \to +\infty$.



- **b.** C.E.: \mathbb{R}^+ ; codominio: \mathbb{R} ;
 - funzione decrescente in \mathbb{R}^+ ;
 - corrispondenza biunivoca;
 - $\log_a x \to +\infty$ per $x \to 0$; $\log_a x \to -\infty$ per $x \to +\infty$.

Logaritmo di un prodotto

$$\log_a(b \cdot c) = \log_a b + \log_a c, \ (b > 0, c > 0)$$

Logaritmo di un quoziente

$$\log_a \frac{b}{c} = \log_a b - \log_a c, \qquad (b > 0, c > 0)$$

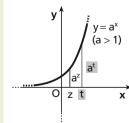
Logaritmo di una potenza

$$\log_a b^n = n \cdot \log_a b, \ (b > 0)$$

Cambiamento di base nei logaritmi

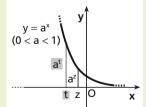
$$\log_a b = \frac{\log_c b}{\log_c a} \qquad a > 0, b > 0, c > 0$$
$$a \neq 1, c \neq 1$$

Disequazioni esponenziali

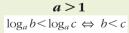


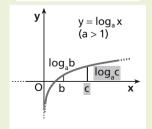
$$0 < a < 1$$

$$a^t > a^z \iff t < z$$



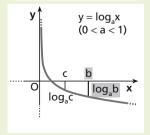
Disequazioni logaritmiche





0 < a < 1

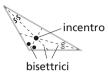
$$\log_a b < \log_a c \iff b > c$$



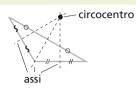
Matematica

RICHIAMI DI GEOMETRIA

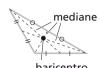
I punti notevoli di un triangolo



L'incentro è il centro della circonferenza inscritta.



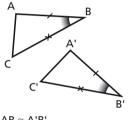
Il circocentro è il centro della circonferenza circoscritta.



Il baricentro divide ogni mediana in due parti di cui quella contenente il vertice è doppia dell'altra

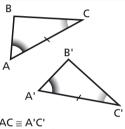
I criteri di congruenza dei triangoli

1° criterio



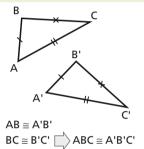
 $AB\cong A^{\prime}B^{\prime}$ $BC \cong B'C' \square ABC \cong A'B'C'$ $\boldsymbol{\hat{\mathsf{B}}} \cong \boldsymbol{\hat{\mathsf{B}}}^{\boldsymbol{\mathsf{I}}}$

2° criterio



 $\mathsf{AC} \cong \mathsf{A'C'}$ $\hat{\mathsf{A}} \cong \hat{\mathsf{A}}'$ ABC ≅ A'B'C' $\hat{C} \cong \hat{C}'$

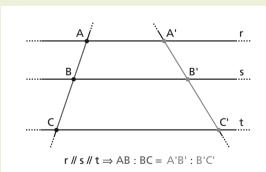
3° criterio



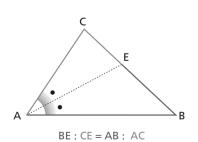
AC ≅ A'C'

Il teorema di Talete

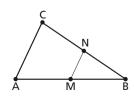
Teorema di Talete



Teorema della bisettrice di un angolo interno di un triangolo



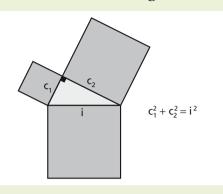
Conseguenza del teorema di Talete



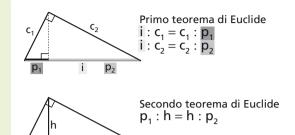
$$\begin{array}{ccc} \mathsf{AM} \cong \mathsf{MB} \\ \mathsf{CN} \cong \mathsf{NB} \end{array} \quad \Longrightarrow \quad \begin{array}{c} \mathsf{MN} \ \# \ \mathsf{AC} \\ \mathsf{MN} \cong \frac{1}{2} \ \mathsf{AC} \end{array}$$

L'equivalenza e la similitudine

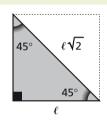
Il teorema di Pitagora

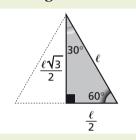


I teoremi di Euclide



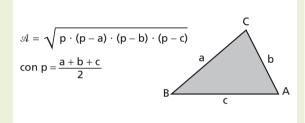
Relazioni fra i lati di triangoli notevoli





Formula di Erone

 p_2



Criteri di similitudine dei triangoli

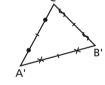
Primo criterio

Secondo criterio

$$AB: A'B' = AC: A'C'$$

 $ABC \approx A'B'C'$

Terzo criterio

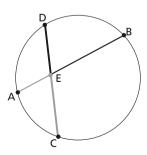


$$AB: A'B' = AC: A'C' = BC: B'C'$$

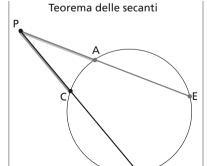
$$ABC \approx A'B'C'$$

La similitudine nella circonferenza

Teorema delle corde secanti

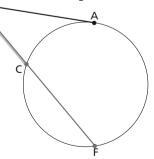


 $\underline{AE} : \underline{CE} = \underline{ED} : \underline{EB}$



PF : PE = PA : PC

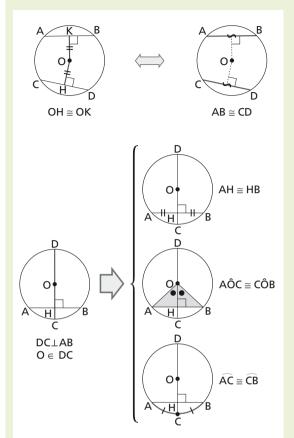
Teorema della secante e della tangente



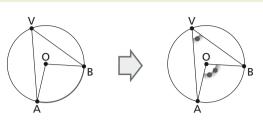
 $\mathsf{PF} : \mathsf{PA} = \ \mathsf{PA} : \mathsf{PC}$

La circonferenza

I teoremi sulle corde

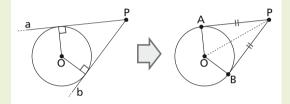


Angoli alla circonferenza e angoli al centro



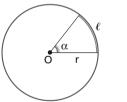
Ogni angolo alla circonferenza è la metà dell'angolo al centro corrispondente.

Tangente a una circonferenza da un punto esterno



Se da un punto esterno a una circonferenza si conducono le rette tangenti, i segmenti di tangente risultano congruenti

La lunghezza della circonferenza e l'area del cerchio



$$c = 2\pi r$$

$$|\ell| = \frac{\alpha}{180} \pi r$$

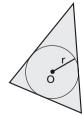
a. Misure della circonferenza (c) e dell'arco di angolo al centro α (ℓ).



$$C = \pi r^2$$

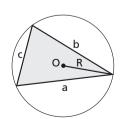
$$S = \frac{\alpha}{360} \pi r^2 = \frac{1}{2} \ell r$$

b. Misure dell'area del cerchio (C) e dell'area del settore circolare di angolo al centro α (S).



$$r = \frac{A}{p}$$

a. Raggio del cerchio inscritto nel triangolo.

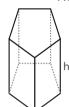


$$R = \frac{abc}{4A}$$

b. Raggio del cerchio circoscritto al triangolo.

Formule di geometria solida

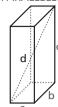
PRISMA RETTO



$$A_{\ell} = 2p \cdot h$$

 $A_{t} = A_{\ell} + 2A_{b}$
 $V = A_{b} \cdot h$

PARALLELEPIPEDO RETTANGOLO



 $A_b = ab$ $A_{\ell} = 2 (ac + bc)$ $A_t = 2(ac + ab + bc)$ $V = a \cdot b \cdot c$ $d = \sqrt{a^2 + b^2 + c^2}$

CUBO

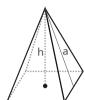
$$A_b = s^2$$

$$A_t = 6 s^2$$

$$V = s^3$$

$$d = s \sqrt{3}$$

PIRAMIDE RETTA



 $A_{\ell} = p \cdot a$ $A_{t} = A_{\ell} + A_{b}$ $V = \frac{1}{3} A_{b} \cdot h$

TRONCO DI PIRAMIDE RETTA

 $A_{\ell} = (p + p') \cdot a$ $A_{t} = A_{\ell} + A_{b} + A'_{b}$ $V = \frac{1}{3} h (A_{b} + A'_{b} + A'_{b} + A'_{b})$

CILINDRO

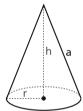
$$A_b = \pi r^2$$

$$A_\ell = 2 \pi r \cdot h$$

$$A_t = 2\pi r (h + r)$$

$$V = \pi r^2 \cdot h$$

CONO



$$A_b = \pi r^2$$

$$A_\ell = \pi ra$$

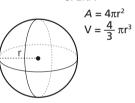
$$A_t = \pi r (a + r)$$

$$V = \frac{1}{3} \pi r^2 \cdot h$$

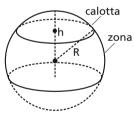
TRONCO DI CONO

 $A_{b} = \pi r^{2}$ $A'_{b} = \pi r^{\prime 2}$ $A_{\ell} = \pi a (r + r')$ $A_{t} = A_{\ell} + A_{b} + A'_{b}$ $V = \frac{1}{3} \pi h (r^{2} + r'^{2} + r \cdot r')$

SFERA

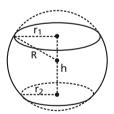


CALOTTA E ZONA SFERICA



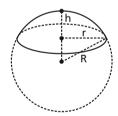
 $S = 2\pi Rh$

SEGMENTO SFERICO A DUE BASI



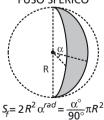
 $V = \frac{4}{3}\pi \left(\frac{h}{2}\right)^3 + \pi r_1^2 \frac{h}{2} + \pi r_2^2 \frac{h}{2}$

SEGMENTO SFERICO A UNA BASE



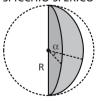
 $V = \frac{4}{3}\pi \left(\frac{h}{2}\right)^3 + \pi r^2 \frac{h}{2} = \frac{1}{3}\pi h^2 (3R - h)$

FUSO SFERICO



 $\alpha^{\it rad}$: ampiezza del diedro in radianti α° : ampiezza del diedro in gradi

SPICCHIO SFERICO



 $V_s = \frac{2}{3} \alpha^{rad} R^3 = \frac{\alpha^{\circ}}{270^{\circ}} \pi R^3$

ANELLO SFERICO

 $V_a = \frac{1}{6} \pi a^2 h$

GEOMETRIA ANALITICA

La distanza fra due punti $A(x_A; y_A)$ e $B(x_B; y_B)$ è data da: $\overline{AB} = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$.

Il **punto medio** del segmento $AB \stackrel{.}{e} M(x_M; y_M)$ con: $x_M = \frac{x_A + x_B}{2}$, $y_M = \frac{y_A + y_B}{2}$.

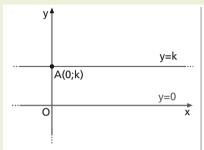
Il **baricentro di un triangolo** di vertici $A(x_A; y_A)$, $B(x_B; y_B)$, $C(x_C; y_C)$ è $G(x_G; y_G)$ con:

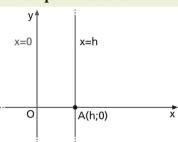
$$x_G = \frac{x_A + x_B + x_C}{3}, \quad y_G = \frac{y_A + y_B + y_C}{3}.$$

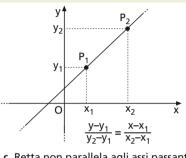
La **distanza di un punto** $P(x_0; y_0)$ **da una retta** r di equazione ax + by + c = 0 è uguale a: $d = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$

Il piano cartesiano e la retta

L'equazione di una retta







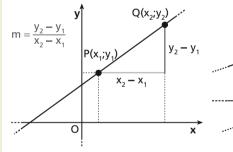
- a. Retta parallela all'asse x.
- **b.** Retta parallela all'asse y.

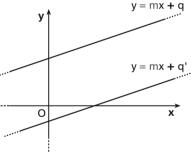
c. Retta non parallela agli assi passante per i punti $P_1(x_1; y_1)$ e $P_2(x_2; y_2)$.

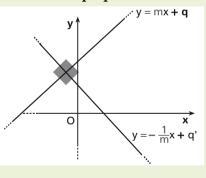
Coefficiente angolare

Rette parallele

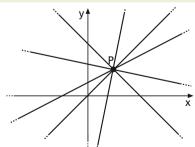
Rette perpendicolari

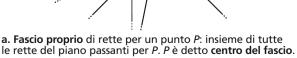


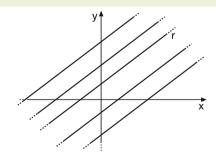




I fasci di rette



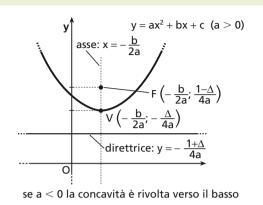




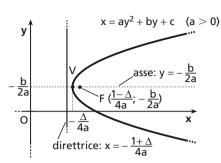
b. Fascio improprio di rette parallele a una retta r.

Le coniche

La parabola con asse parallelo all'asse y

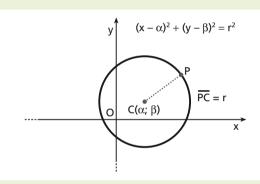


La parabola con asse parallelo all'asse x

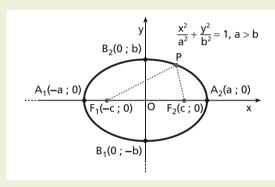


se a < 0 la concavità è rivolta nel verso opposto

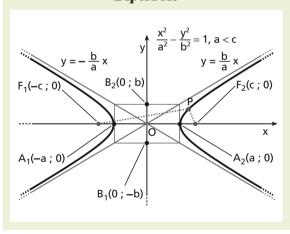
La circonferenza



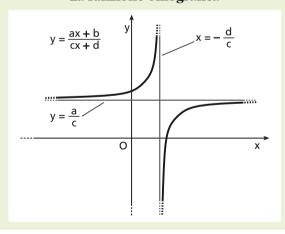
L'ellisse



L'iperbole

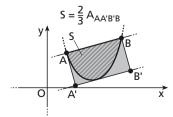


La funzione omografica



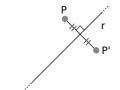
IL SEGMENTO PARABOLICO

Tracciamo la retta parallela ad AB e tangente alla parabola, e consideriamo su di essa le proiezioni A' e B' di A e B. L'area del segmento parabolico è uguale a $\frac{2}{3}$ dell'area del rettangolo AA'B'B.



LA SIMMETRIA ASSIALE

Fissata nel piano una retta r, la **simmetria assiale rispetto alla retta r** è quella isometria che a ogni punto del piano P fa corrispondere il punto P' del semipiano opposto rispetto a r, in modo che r sia l'asse del segmento PP', ossia:



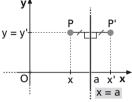
- r passa per il punto medio di PP';
- PP' è perpendicolare alla retta r.

La retta r è detta **asse di simmetria**.

Nel piano cartesiano prendiamo in esame le seguenti simmetrie assiali, fornendo le relative equazioni.

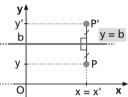
a. Simmetria con asse x = a (asse parallelo all'asse y)

$$\begin{cases} x' = 2a - x \\ y' = y \end{cases}$$



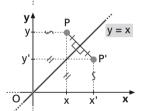
b. Simmetria con asse y = b (asse parallelo all'asse x)

$$\begin{cases} x' = x \\ y' = 2b - y \end{cases}$$



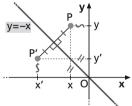
c. Simmetria con asse y = x (bisettrice del primo e terzo quadrante)

$$\begin{cases} x' = y \\ y' = x \end{cases}$$



d. Simmetria con asse y = -x (bisettrice del secondo e quarto quadrante)

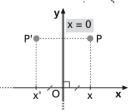
$$\begin{cases} x' = -y \\ y' = -x \end{cases}$$



e. Simmetria con asse x = 0 (asse y)

$$\begin{cases} x' = -x \\ y' = y \end{cases}$$

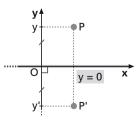
Due punti simmetrici rispetto all'asse γ hanno ascisse opposte e la stessa ordinata.



f. Simmetria con asse y = 0 (asse x)

$$\begin{cases} x' = x \\ y' = -y \end{cases}$$

Due punti simmetrici rispetto all'asse \boldsymbol{x} hanno la stessa ascissa e ordinate opposte.



GONIOMETRIA E TRIGONOMETRIA

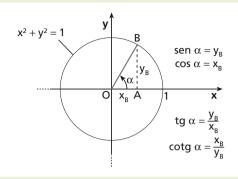
Le funzioni goniometriche

La prima relazione fondamentale

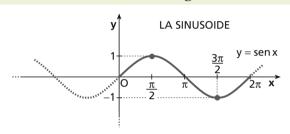
$$sen^2 \alpha + cos^2 \alpha = 1$$

La seconda relazione fondamentale

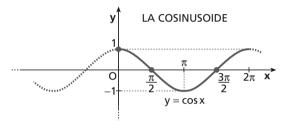
$$tg \alpha = \frac{sen \alpha}{\cos \alpha}$$

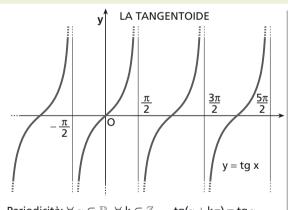


I grafici delle funzioni goniometriche

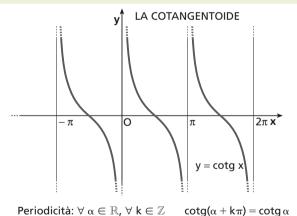


Periodicità: $\forall \alpha \in \mathbb{R}, \ \forall k \in \mathbb{Z}$ $sen(\alpha + 2 k\pi) = sen\alpha$ | Periodicità: $\forall \alpha \in \mathbb{R}, \ \forall k \in \mathbb{Z}$ $cos(\alpha + 2 k\pi) = cos\alpha$

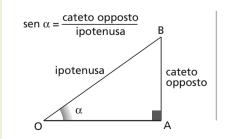


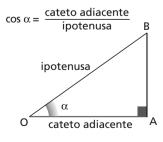


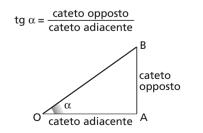
Periodicità: $\forall \alpha \in \mathbb{R}, \forall k \in \mathbb{Z}$ $tg(\alpha + k\pi) = tg \alpha$



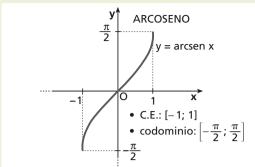
Seno, coseno e tangente su un triangolo rettangolo

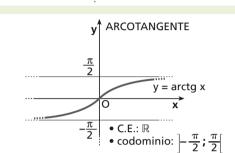


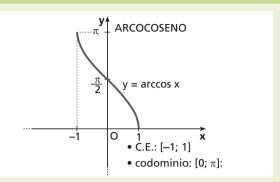


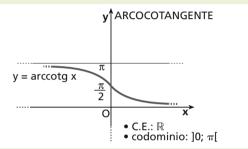


Le funzioni goniometriche inverse





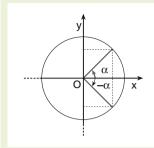




Seno, coseno, tangente e cotangente di angoli notevoli					
radianti	gradi	seno	coseno	tangente	cotangente
0	0	0	1	0	non esiste
$\frac{\pi}{12}$	15°	$\frac{\sqrt{6}-\sqrt{2}}{4}$	$\frac{\sqrt{6}+\sqrt{2}}{4}$	$2-\sqrt{3}$	$2+\sqrt{3}$
$\frac{\pi}{10}$	18°	$\frac{\sqrt{5}-1}{4}$	$\frac{\sqrt{10+2\sqrt{5}}}{4}$	$\frac{\sqrt{25-10\sqrt{5}}}{5}$	$\sqrt{5+2\sqrt{5}}$
$\frac{\pi}{8}$	22°30′	$\frac{\sqrt{2-\sqrt{2}}}{2}$	$\frac{\sqrt{2+\sqrt{2}}}{2}$	$\sqrt{2}-1$	$\sqrt{2}+1$
$\frac{\pi}{6}$	30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$
$\frac{\pi}{5}$	36°	$\frac{\sqrt{10-2\sqrt{5}}}{4}$	$\frac{\sqrt{5}+1}{4}$	$\sqrt{5-2\sqrt{5}}$	$\frac{\sqrt{25+10\sqrt{5}}}{5}$
$\frac{\pi}{4}$	45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1
$\frac{3}{10}\pi$	54°	$\frac{\sqrt{5}+1}{4}$	$\frac{\sqrt{10-2\sqrt{5}}}{4}$	$\frac{\sqrt{25+10\sqrt{5}}}{5}$	$\sqrt{5-2\sqrt{5}}$
$\frac{\pi}{3}$	60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$
$\frac{2}{5}\pi$	72°	$\frac{\sqrt{10+2\sqrt{5}}}{4}$	$\frac{\sqrt{5}-1}{4}$	$\sqrt{5+2\sqrt{5}}$	$\frac{\sqrt{25-10\sqrt{5}}}{5}$
$\frac{5}{12}\pi$	75°	$\frac{\sqrt{6}+\sqrt{2}}{4}$	$\frac{\sqrt{6}-\sqrt{2}}{4}$	$2+\sqrt{3}$	$2-\sqrt{3}$
$\frac{\pi}{2}$	90°	1	0	non esiste	0

Funzioni goniometriche di angoli associati

 $\alpha e - \alpha$



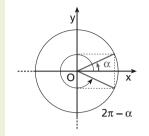
$$\operatorname{sen}(-\alpha) = -\operatorname{sen}\alpha$$

$$\cos(-\alpha) = \cos\alpha$$

$$tg(-\alpha) = -tg\alpha$$

$$\cot g(-\alpha) = -\cot g\alpha$$

 $\alpha = 2\pi - \alpha$



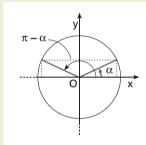
$$sen(2\pi - \alpha) = -sen\alpha$$

$$\cos(2\pi - \alpha) = \cos\alpha$$

$$tg(2\pi - \alpha) = -tg\alpha$$

$$\cot g(2\pi - \alpha) = -\cot g\alpha$$

 $\alpha \in \pi - \alpha$



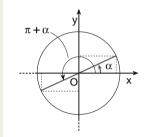
$$\operatorname{sen}(\pi - \alpha) = \operatorname{sen}\alpha$$

$$\cos(\pi - \alpha) = -\cos\alpha$$

$$tg(\pi - \alpha) = -tg\alpha$$

$$\cot g(\pi - \alpha) = -\cot g\alpha$$

 $\alpha \in \pi + \alpha$



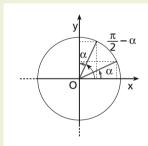
$$\operatorname{sen}(\pi + \alpha) = -\operatorname{sen}\alpha$$

$$\cos(\pi + \alpha) = -\cos\alpha$$

$$tg(\pi + \alpha) = tg\alpha$$

$$\cot g(\pi + \alpha) = \cot g \alpha$$

 $\alpha e^{\frac{\pi}{2}} - \alpha$



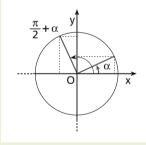
$$\operatorname{sen}\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha$$

$$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha$$

$$tg\bigg(\frac{\pi}{2}-\alpha\bigg)\ = cotg\,\alpha$$

$$\cot\left(\frac{\pi}{2} - \alpha\right) = \operatorname{tg}\alpha$$

 $\alpha = \frac{\pi}{2} + \alpha$



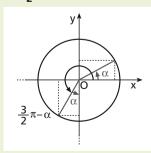
$$\operatorname{sen}\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha$$

$$\cos\!\left(\frac{\pi}{2}\!+\!\alpha\right)\!=\!-\sin\!\alpha$$

$$tg\bigg(\frac{\pi}{2}+\alpha\bigg)=-\cot\!g\alpha$$

$$\cot\left(\frac{\pi}{2} + \alpha\right) = -\operatorname{tg}\alpha$$

 $\alpha e^{\frac{3}{2}\pi - \alpha}$



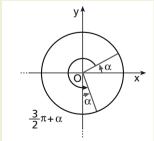
$$\operatorname{sen}\left(\frac{3}{2}\pi - \alpha\right) = -\cos\alpha$$

$$\cos\left(\frac{3}{2}\pi - \alpha\right) = -\sin\alpha$$

$$tg\left(\frac{3}{2}\pi - \alpha\right) = \cot \alpha$$

$$\cot\left(\frac{3}{2}\pi - \alpha\right) = \operatorname{tg}\alpha$$

 $\alpha e^{\frac{3}{2}\pi + \alpha}$



$$\operatorname{sen}\left(\frac{3}{2}\pi + \alpha\right) = -\cos\alpha$$

$$\cos\left(\frac{3}{2}\pi + \alpha\right) = \operatorname{sen}\alpha$$

$$tg\left(\frac{3}{2}\pi + \alpha\right) = -\cot \alpha$$

$$\cot\left(\frac{3}{2}\pi + \alpha\right) = -\operatorname{tg}\alpha$$

Le formule goniometriche

Le formule di addizione

$$sen(\alpha + \beta) = sen \alpha \cos \beta + \cos \alpha sen \beta$$

$$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$$

$$tg(\alpha + \beta) = \frac{tg \alpha + tg \beta}{1 - tg \alpha \cdot tg \beta}$$

$$con \alpha, \beta, \alpha + \beta \neq \frac{\pi}{2} + k\pi$$

Le formule di sottrazione

$$sen(\alpha - \beta) = sen \alpha \cos \beta - \cos \alpha sen \beta$$

$$\cos(\alpha - \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta$$

$$tg(\alpha - \beta) = \frac{tg \alpha - tg \beta}{1 + tg \alpha \cdot tg \beta}$$

$$\cos \alpha, \beta, \alpha - \beta \neq \frac{\pi}{2} + k\pi$$

Le formule di duplicazione

$$sen 2\alpha = 2 sen \alpha cos \alpha$$

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$$

$$tg \, 2\alpha = \frac{2tg \, \alpha}{1 - tg^2 \, \alpha}$$

Le formule di bisezione

$$\sin\frac{\alpha}{2} = \pm\sqrt{\frac{1-\cos\alpha}{2}}$$

$$\cos\frac{\alpha}{2} = \pm\sqrt{\frac{1+\cos\alpha}{2}}$$

$$tg\frac{\alpha}{2} = \pm \sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}}$$

Le formule parametriche

$$\operatorname{sen}\alpha = \frac{2\operatorname{tg}\frac{\alpha}{2}}{1 + \operatorname{tg}^2\frac{\alpha}{2}}$$

$$\cos\alpha = \frac{1 - tg^2 \frac{\alpha}{2}}{1 + tg^2 \frac{\alpha}{2}}, \cos\alpha \neq \pi + k2\pi$$

Le formule di prostaferesi

$$\operatorname{sen} p + \operatorname{sen} q = 2 \operatorname{sen} \frac{p+q}{2} \cdot \cos \frac{p-q}{2}$$

$$\operatorname{sen} p - \operatorname{sen} q = 2 \cos \frac{p+q}{2} \cdot \operatorname{sen} \frac{p-q}{2}$$

$$\cos p + \cos q = 2\cos\frac{p+q}{2} \cdot \cos\frac{p-q}{2}$$

$$\cos p - \cos q = -2 \operatorname{sen} \frac{p+q}{2} \cdot \operatorname{sen} \frac{p-q}{2}$$

Le formule di Werner

$$sen α sen β = \frac{1}{2} [cos(α - β) - cos(α + β)]$$

$$\cos \alpha \cos \beta = \frac{1}{2} \left[\cos(\alpha + \beta) + \cos(\alpha - \beta) \right]$$

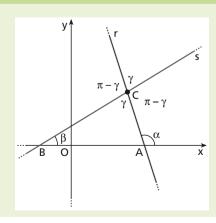
$$sen \alpha cos \beta = \frac{1}{2} [sen(\alpha + \beta) + sen(\alpha - \beta)]$$

L'angolo fra due rette

$$r: y = mx + q$$
, con $m = \operatorname{tg} \alpha$

$$s: y = m'x + q'$$
, con $m' = \operatorname{tg} \beta$

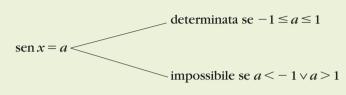
$$tg \gamma = tg(\alpha - \beta) = \frac{m - m'}{1 + mm'}.$$

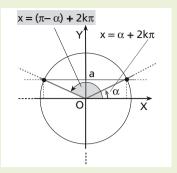


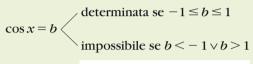
Equazioni goniometriche elementari

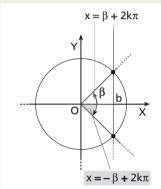
Un'**equazione** si dice **goniometrica** se contiene almeno una funzione goniometrica dell'incognita. Si chiamano **elementari** le equazioni goniometriche del tipo:

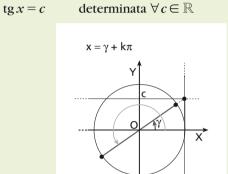
$$\operatorname{sen} x = a, \cos x = b, \operatorname{tg} x = c.$$











Ci sono particolari equazioni elementari che si possono risolvere con le proprietà della seguente tabella.

Tipo di equazione	Proprietà
$\operatorname{sen} \alpha = \operatorname{sen} \alpha'$	$\operatorname{sen} \alpha = \operatorname{sen} \alpha' \Leftrightarrow \alpha = \alpha' + 2k\pi \vee \alpha + \alpha' = \pi + 2k\pi$
$\operatorname{sen} \alpha = -\operatorname{sen} \alpha'$	$-\operatorname{sen}\alpha'=\operatorname{sen}(-\alpha')$
$\operatorname{sen} \alpha = \cos \alpha'$	$\cos \alpha' = \operatorname{sen}\left(\frac{\pi}{2} - \alpha'\right)$
$\operatorname{sen} \alpha = -\cos \alpha'$	$-\cos\alpha' = -\sin\left(\frac{\pi}{2} - \alpha'\right) = \sin\left(-\frac{\pi}{2} + \alpha'\right)$
$\cos \alpha = \cos \alpha'$	$\cos \alpha = \cos \alpha' \Leftrightarrow \alpha = \pm \alpha' + 2k\pi$
$\cos \alpha = -\cos \alpha'$	$-\cos\alpha'=\cos(\pi-\alpha')$
$tg \alpha = tg \alpha'$	$\operatorname{tg} \alpha = \operatorname{tg} \alpha' \Leftrightarrow \alpha = \alpha' + k\pi$
$tg \alpha = -tg \alpha'$	$-\operatorname{tg}\alpha'=\operatorname{tg}\left(-\alpha'\right)$

LE EQUAZIONI LINEARI IN SENO E COSENO

$$a \operatorname{sen} x + b \operatorname{cos} x + c = 0$$
 $a \neq 0, b \neq 0$

Metodo algebrico

•
$$c = 0 \rightarrow \text{si divide per } \cos x \rightarrow \text{tg } x = -\frac{b}{a}$$
.

•
$$c \neq 0 \rightarrow \text{si}$$
 determinano le eventuali soluzioni di tipo $x = \pi + 2k\pi$;
se $x \neq \pi + 2k\pi$, applicando le formule parametriche si ottiene

$$\begin{cases} t^{2}(c-b) + 2at + b + c = 0 \\ t = tg\frac{x}{2} \end{cases}$$

Metodo grafico

Si sostituisce $Y = \operatorname{sen} x$ e $X = \cos x$ e si risolve quindi il sistema seguente:

$$\begin{cases} X^2 + Y^2 = 1 \\ aY + bX + c = 0 \end{cases}$$

Metodo dell'angolo aggiunto

Si risolve il sistema seguente:

$$\begin{cases} \operatorname{sen}(x+\alpha) = -\frac{c}{r} \\ r = \sqrt{a^2 + b^2} \\ \operatorname{tg} \alpha = \frac{b}{a} \end{cases}$$

LE EQUAZIONI OMOGENEE DI SECONDO GRADO IN SENO E COSENO

$$a \operatorname{sen}^2 x + b \cos x \operatorname{sen} x + c \cos^2 x = 0$$

Primo metodo

•
$$a = 0 \rightarrow \cos x (b \sin x + c \cos x) = 0$$

•
$$a \neq 0 \rightarrow \text{si divide per } \cos^2 x \rightarrow a \operatorname{tg}^2 x + b \operatorname{tg} x + c = 0$$

Secondo metodo

Un'equazione lineare della forma

$$a \operatorname{sen}^2 x + b \operatorname{sen} x \cos x + c \cos^2 x = d \quad (d \neq 0)$$

è riconducibile a un'equazione omogenea sostituendo $d = d(\cos^2 x + \sin^2 x)$.

Disequazioni goniometriche

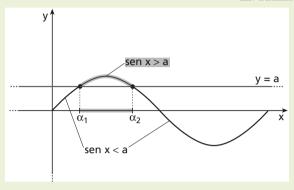
Primo metodo

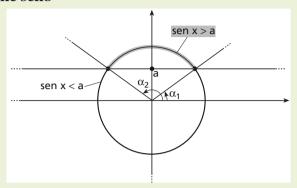
Si studia la posizione reciproca tra il grafico della funzione goniometrica e la retta y = a.

Secondo metodo

Si disegna la circonferenza goniometrica, si risolve l'equazione associata, si determinano gli archi in cui è soddisfatta.

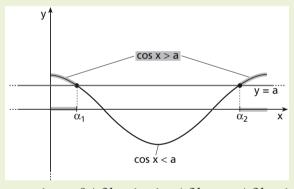
La funzione seno

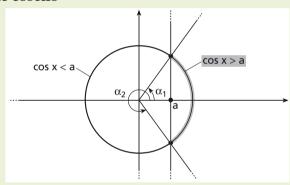




 $\operatorname{sen} x > a \to \alpha_1 + 2k\pi < x < \alpha_2 + 2k\pi; \ \operatorname{sen} x < a \to 0 + 2k\pi < x < \alpha_1 + 2k\pi \vee \alpha_2 + 2k\pi < x < 2\pi + 2k\pi$

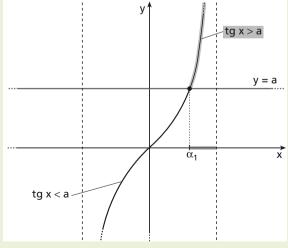
La funzione coseno

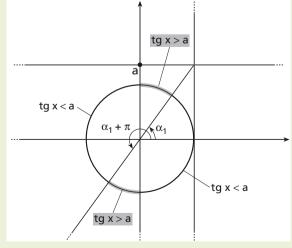




 $\cos x > a \to 0 + 2k\pi < x < \alpha_1 + 2k\pi \lor \alpha_2 + 2k\pi < x < 2\pi + 2k\pi; \cos x < a \to \alpha_1 + 2k\pi < x < \alpha_2 + 2k\pi$

La funzione tangente





$$tg x > a \rightarrow \alpha_1 + k\pi < x < \frac{\pi}{2} + k\pi; tg x < a \rightarrow -\frac{\pi}{2} + k\pi < x < \alpha_1 + k\pi$$