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In this article we introduce an activity in which introductory astronomy students act as gravitational
wave astronomers by extracting information from simulated gravitational wave signals. The process
mimics the way real gravitational wave analysis is handled by using plots of a pure gravitational
wave signal. The students measure the properties of the simulated signal and use these
measurements to evaluate standard relations for astrophysical source parameters. Although the
activity described focuses on circular binaries, the techniques described can be applied to other
gravitational wave sources as well. A problem based on the discussion in this paper is available for
use in introductory laboratory courses. © 2007 American Association of Physics Teachers.
�DOI: 10.1119/1.2721587�
I. INTRODUCTION

Observational astronomy is at the threshold of an era
where gravitational wave detectors regularly contribute im-
portant information to the growing body of astrophysical
knowledge.1 Ground based detectors such as the Laser Inter-
ferometer Gravitational-wave Observatory2 �LIGO� and the
forthcoming space based detector, the Laser Interferometer
Space Antenna3 �LISA�, will probe different regimes of the
gravitational wave spectrum and observe sources that radiate
at different gravitational wavelengths. Unlike traditional
electromagnetic telescopes, gravitational wave detectors are
not imaging instruments. How then does a gravitational wave
astronomer take the output from a detector and extract astro-
physical information about the emitting sources? This paper
introduces a hands-on activity in which introductory as-
tronomy students answer this question.

Traditional astronomy is usually presented through the
medium of colorful images taken with large scale telescopes.
In addition to studying images, astronomers learn about as-
trophysical systems by collecting data at multiple wave-
lengths using, for example, narrow-band spectra and measur-
ing time-varying light curves. The core physics governing
the evolution of these distant systems is often deduced from
the physical character of the observed electromagnetic radia-
tion, rather than from the imagery that is used to illustrate the
science.

Gravitational wave astronomy is analogous to its electro-
magnetic cousin, with one important distinction: there is no
image data. Gravitational wave observatories like LIGO and
LISA return a noisy time series that has encoded within it
gravitational wave signals from one or possibly many over-
lapping sources. To gain information about the systems emit-
ting these gravitational wave signals requires the use of time
series analysis techniques such as Fourier transforms, Fisher
information matrices, and matched filtering. Recently, it was

shown in Ref. 4 how students can emulate the match filtering
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process by comparing ideal signals to mocked noisy detector
output.4 In this paper, a procedure is described in which stu-
dents can analyze a simulated gravitational wave signal and
extract the astrophysical parameters that describe the radiat-
ing system. The goal is to introduce students to how gravi-
tational wave astronomers learn about sources of gravita-
tional radiation.

Section II outlines the theory relating the structure of
gravitational waves to astrophysical parameters, and Sec. III
illustrates the characteristic waveforms from a typical binary
system. Section IV illustrates a procedure where measure-
ments made from waveform plots, together with the theory
of waveform generation, can be used to extract the astro-
physical parameters of the system emitting gravitational ra-
diation. Section V discusses implementations and extensions
of this activity in an introductory astronomy course. The
analysis described in the paper has been implemented in an
activity format, complete with a keyed solution for the in-
structor, and is publicly available.5

II. GRAVITATIONAL WAVE PRODUCTION
IN BINARIES

In electromagnetism radiation is produced by an acceler-
ating charged particle. Similarly, in general relativity, gravi-
tational radiation is produced by an accelerating mass. More
precisely, gravitational waves are produced by a time varying
mass quadrupole moment.6 Monopole radiation is prevented
due to conservation of mass, and dipole radiation does not
occur due to the conservation of momentum. Hence, the
quadrupole is the leading order term in the multipole expan-
sion of the radiation field. Expected astrophysical examples
of time varying quadrupole moments include spinning neu-

tron stars with surface deformities, the inspiral and eventual
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plunge of compact objects into massive black holes, and
asymmetric supernovae.7 This paper focuses on an additional
example, a binary star system.

For a circular binary system, where the components are
treated as point-like particles, the gravitational waveforms
take on the seductively simple form

h�t� = A�t�cos ��t� , �1�

where h�t� is the gravitational waveform �also referred to as
the gravitational wave strain�, A�t� is the time dependent
amplitude, and ��t� is the gravitational wave phase. The
amplitude A�t� can be expressed in terms of the parameters
characterizing the system,

A�t� =
2�GM�5/3

c4r
� �

Pgw�t�
�2/3

, �2�

where G is Newton’s gravitational constant, c is the speed of
light, r is the luminosity distance to the binary, and Pgw�t� is
the gravitational wave period. The quantity M
��M1M2�3/5�M1+M2�−1/5 is the chirp mass and appears of-
ten in gravitational wave physics, making it a natural mass
scale. The origin for this nomenclature will become evident
shortly. The gravitational wave phase, ��t�, is analogous to
the phase for other wave phenomenon. It represents the lo-
cation of the wave cycle which is impinging on the detector
at time t, and tracks the evolution of the wave’s amplitude as
a function of time. The phase has units of radians, and is
related to the gravitational wave frequency fgw �or, alterna-
tively, the period Pgw= fgw

−1� by the integral,

��t� = �0 + 2��
0

t dt�

Pgw�t��
. �3�

Here �0 is the initial phase value, �0=��t=0�.
If we return to the amplitude given in Eq. �2� and substi-

tute typical values for a neutron star binary located at the
center of our galaxy, we find that gravitational waves are
extremely weak,

A = 10−22� M
1.22 M�

�5/3� r

8 kpc
�−1� Pgw

103 s
�−2/3

. �4�

An analysis of the units in Eq. �2� reveals that the amplitude
A is dimensionless. Gravitational radiation manifests itself in
matter by inducing a strain. In other words, Eq. �1� gives the
relative change in the distance between two points in space-
time as a function of time. By monitoring the separation
between two or more test masses, it is possible to discern if
a gravitational wave is present. The measurement of the
gravitational radiation field directly is in contrast to most
electromagnetic observations where the energy flux �the
square of the field� is measured.

As in electromagnetism, gravitational waves have two in-
dependent polarization states. For a binary system the two
states are related by a 90° phase shift. Consequently, Eq. �1�
captures the functional form for both polarization states. For
the purposes of this paper only a single polarization state and
its associated waveform will be discussed.

Gravitational waves carry energy and angular momentum
away from the binary system causing the orbital period to

8
decrease with time according to
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Porb�t� = �P0
8/3 − 8

3kt�3/8, �5�

where P0 is the orbital period at time t=0, and k is an evo-
lution constant given by

k �
96

5
�2��8/3�GM

c3 �5/3

. �6�

As a result of the decreasing orbital period, the two binary
components will slowly inspiral, eventually colliding and
coalescing into a single remnant. For the assumption of
point-like particles, the coalescence occurs when Porb�t�=0.

Although gravitational waves have not yet been detected
directly, they were first indirectly detected through orbital
period decay in the early 1970s when Hulse and Taylor ob-
served the first known binary pulsar, PSR 1913+16.9 Be-
cause pulsars are extremely accurate clocks, it was possible
to use changes in the pulse intervals to measure the changing
orbital period as the system decays. The orbital decay rate
was found to agree with general relativity’s prediction of
gravitational radiation to exquisite accuracy.10

It is important to emphasize that Eq. �5� gives the orbital
period, not the gravitational wave period. Careful scrutiny of
Eqs. �2� and �3� reveals that the gravitational wave period
Pgw�t� appears in the description of the waveform. For cir-
cularized binary systems, Porb�t� and Pgw�t� are simply re-
lated by

Porb�t� = 2Pgw�t� . �7�

The factor of two stems from the fact that the lowest possible
order for gravitational radiation production is the quadrupole
order. Quadrupole moments are invariant under a 180° rota-
tion, yielding a factor of two per complete orbit.

III. WAVEFORMS FROM A BINARY SYSTEM

As an example of the kind of waveforms we expect from
binaries, consider a binary neutron star system with M1
=M2=1.4M� �M=1.22M�� located at the center of the gal-
axy r=8 kpc away. We will consider waveforms generated at
two distinct times in the binary’s evolution. The first wave-
form that we will consider is 	106 years before coalescence.
During this phase the gravitational wave frequency is detect-
able by the spaceborne LISA observatory, which is sensitive
to radiation between 10−5 and 1 Hz. The second waveform
we will consider is during the final second before the neutron
star binary coalesces. The gravitational wave frequencies
during this phase are detectable by the terrestrial LIGO ob-
servatory, which is sensitive to gravitational wave frequen-
cies between 64 and 2000 Hz.

A. Far from coalescence

Figure 1 shows the emitted gravitational radiation long
before the binary components coalesce. The figure was pro-
duced using Eqs. �1�–�7� and the values given previously.
During this era of the binary evolution, the gravitational
waves are essentially monochromatic; the orbital period is
evolving too slowly to detect a frequency derivative term.
For such monochromatic signals the only measurable prop-
erties of the gravitational waveform are the period Pgw �and
the orbital period Porb through Eq. �7��, the amplitude A, and
the initial phase �0. Even though the waveform equations

depend on the chirp mass M and the luminosity distance r, it
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is not possible to solve for their values from the data pro-
vided by the monochromatic waveform. Not enough infor-
mation exists to completely solve Eqs. �2� and �5� for both
quantities. The inability to detect a change in the orbital pe-
riod can be seen by considering the relative size of the two
terms in Eq. �5�. If we use the binary neutron star chirp mass
M=1.22 M�, it is evident that the second term is negligible
compared to the period P0 of the wave shown in Fig. 1. In
the parlance of gravitational wave astronomy, there is a
mass-distance degeneracy in the waveform description,
analogous to the familiar mass-inclination degeneracy in the
electromagnetic observations of spectroscopic binaries.11

This degeneracy is well known, but we will show that it can
be broken if the orbital period of the binary evolves during
the gravitational wave observations.

B. Near coalescence

Inspection of Eq. �5� shows that, as time goes on, the
emission of gravitational waves causes the orbital period to
become shorter and, as a result, the frequency of the emitted
waves increases. Similarly, consideration of Eq. �2� shows
that as the wave period decreases, the time dependent ampli-
tude A�t� increases. These changes are characteristic of
gravitational waves emitted just prior to a source coalescence
and are referred to collectively as a chirp signal. The chirp
waveform emitted by the example binary neutron star system
just prior to coalescence is illustrated in Fig. 2.

Fig. 1. The gravitational waveform for a binary system consisting of two
neutron stars far from coalescence and located at the center of our galaxy.

Fig. 2. The waveform over the last second before coalescence. Because the
signal’s amplitude and frequency increase with time, these types of systems

are said to be chirping.
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A binary signal that evolves appreciably during the gravi-
tational wave observation is called a chirping binary. In these
cases, the mass parameter M which appears in the amplitude
A�t� and in the period evolution constant k can be deter-
mined from measurements of the evolving signal. For this
reason, the mass M is called the chirp mass. To leading
order in the gravitational wave production, it is not possible
to measure the individual masses, only the chirp mass. Con-
sequently, it is not possible to distinguish between binaries
with the same chirp mass. For example, the binary neutron
star considered here with M1=M2=1.4 M� has roughly the
same chirp mass as a binary with an M1=10 M� black hole
and a M2=0.3 M� white dwarf.

To extract the chirp mass from measurements of the gravi-
tational waveform, consider two small stretches of the chirp-
ing waveform. Figure 3 shows the waveform from 0 s� t
�0.05 s, and Fig. 4 shows the waveform from 0.9 s� t
�0.92 s. The waveform is appreciably different between
these two snapshots, both in amplitude A�t� and in period
Pgw�t�. This difference allows the degeneracy found in the
monochromatic signal case to be broken, because the gravi-
tational wave period can be measured at two different times
and used in Eq. �5� to solve for the chirp mass M.

IV. MEASURING GRAVITATIONAL WAVEFORMS

This section illustrates a procedure where introductory as-
tronomy students can make measurements from the figures
in Sec. III using a straight edge. From their measured data

Fig. 3. The chirping waveform one second before coalescence.
Fig. 4. The chirping waveform one-tenth of a second before coalescence.
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and the theoretical results in Sec. II they can deduce the
astrophysical character of the system emitting the gravita-
tional waveforms.

A. Monochromatic waveforms

Limited astrophysical information can be extracted di-
rectly from Fig. 1, as will be the case with true monochro-
matic signals detected by gravitational wave observatories.
With limited assumptions more detailed information can be
deduced. A suitable extraction and analysis procedure for an
introductory astronomy student would proceed in the follow-
ing manner:

�1� Measure the gravitational wave period Pgw from Fig. 1.
Because the signal is monochromatic and the binary is
circular, the orbital period Porb is obtained from Pgw us-
ing Eq. �7�. For the waveform in Fig. 1, a careful mea-
surement should yield Pgw=1000 s.

�2� Measure the maximum value for h�t� shown in Fig. 1.
This is the value for the amplitude A given in Eq. �2�. As
noted in Sec. III A, no astrophysical information can be
extracted from the amplitude alone. When a binary sys-
tem is far from coalescence, it is not possible to detect a
changing orbital period. From Eq. �2� the same can be
said about the amplitude. Therefore, the amplitude mea-
sured here can be taken to be time-independent.

�3� Measure the initial phase for the waveform displayed in
Fig. 1. This is done by noting that at t=0 the gravita-
tional waveform reduces to

h�t = 0� = A cos �0, �8�

which in turn implies that

�0 = cos−1�h�t = 0�
A

�. �9�

For the plots in Fig. 1, a careful measurement should
give a value near �0=� /7
0.45. The initial phase does
not represent an intrinsic property of the binary; its value
is a consequence of when the gravitational wave obser-
vations began. To illustrate this property of the initial
phase, imagine relabeling the time axis in Fig. 1 to rep-
resent a new observation that started later than the ob-
servation shown. The initial phase will have a new value,
but the waveform does not change because the intrinsic
properties of the binary did not change.

�4� If a gravitational wave astronomer were to assume that
the binary was a pair of neutron stars, the component
mass values could be assigned as part of the assumption.
Most neutron star masses cluster around M =1.4 M�. A
good initial assumption, and one that we will make from
this point on, is that each component of the binary has
this mass. As noted in Sec. III A, this assumption can be
dangerous because similar chirp masses, M, can result
from significantly different systems. Additional informa-
tion not present in the gravitational waveform might help
an astronomer be more confident about such an assump-
tion. For example, an associated simultaneous electro-
magnetic signal or the location of the source on the sky
may favor one model of the binary over another. With
the assumed component masses, the orbital separation R

of the binary components can be computed from the
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measured orbital period by using Kepler’s third law,

G�m1 + m2� = � 2�

Porb
�2

R3. �10�

For this example, the orbital separation is R=1.4
�10−3 AU=2.1�108 m, a little less than the separation
of the Earth and the Moon.

�5� If the masses are assumed, the distance to the binary can
be calculated from Eq. �2� and the measured amplitude.
If careful measurements have been made, the answer
should be close to the value r=8 kpc=2.5�1020 m.

�6� Finally, if the masses are assumed, it can be shown that
the monochromatic description is a good one for this
wave by computing the value of the second term in Eq.
�5� and showing that it is negligible compared to the
measured period P0. The second term in Eq. �5� is found
by using the assumed mass values to get the chirp mass
and the final time shown on the plot for the value of t.

B. Chirping waveforms

For a chirping waveform, additional astrophysical infor-
mation associated with the system can be extracted directly
from measurements of the waveform without making under-
lying assumptions like those needed when the system is far
from coalescence. To extract information from the chirping
waveform shown in Fig. 2, the two zoom-ins of the wave-
form shown in Figs. 3 and 4 will be used. A typical extrac-
tion procedure might look like the following:

�1� For Figs. 3 and 4, measure the period of one cycle of the
wave and note the time, t, at which the periods were
measured. The amplitudes A�t� should be measured for
the same cycle as the periods.

�2� If the period measured at time t1 in Fig. 3 is P0, and the
period measured at time t2 in Fig. 4 is Pgw�t� at time t
= t2− t1, then Eq. �5� can be used to deduce the chirp
mass, M, of the system.

�3� Once the chirp mass M has been determined, the dis-
tance to the binary can be computed by using Eq. �2�
with the measured amplitude A�t� and period Pgw�t� of
each waveform. The results from the two figures can be
averaged together to obtain a final result for the distance
to the binary.

V. DISCUSSION

The activity described here introduces how gravitational
wave astronomers extract astrophysical information from ob-
served binary waveforms. Real signal analysis is more com-
plex. The most significant challenge for real data analysis is
identifying the signal buried in a noisy data stream. A com-
mon approach to this problem in gravitational wave as-
tronomy is to use template matching, which has been ex-
plored in a separate activity.4 If a signal is present in a noisy
data stream, the template provides a way to subtract the noise
and leave a clean waveform. This activity assumes a signal
template has been selected. Astronomers estimate the values
of astrophysical parameters describing a source of gravita-
tional waves from clean waveforms.

We have introduced the core calculations in gravitational
wave astrophysics that an introductory astronomy student

can perform in a laboratory setting to gain information about
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an astrophysical system. To complement this article we have
developed a detailed student activity sheet and corresponding
teacher’s guide in Sec. IV. The complementary material is
available at Ref. 5.
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