
ROLLING-BALL DATA ANALYSIS
A ball rolling down a ramp that was assumed to be straight, but in fact was curved slightly.

INTRODUCTION

It was suggested that a way to analyze the rolling-ball data would be to find the acceleration for each distance, and
then in  some manner  compare  these  estimates  to  test  the  hypothesis  that  the  acceleration  was  constant  across
distance down the ramp. This in fact had already been done in some prior experimentation, and the conclusion was
that this approach was a relatively weak (in the statistical sense) test for a constant acceleration. It also would have
required some new uncertainty analysis. Thus it was decided to stick with the (Galileo) ratio tests, for which the
uncertainty analysis had already been developed.

However,  calculation  of  the  acceleration  at  each  distance,  and  its  uncertainty,  is  straightforward,  and  so  this
capability was added to the computer data analysis program. Graphing the acceleration estimates against distance
down  the  ramp,  that  is,  a(s) vs.  s,  should  have  revealed  random  scatter  around  some  average  value,  if  the
acceleration was constant down the ramp. That is, there should be no apparent trend.

ACCELERATION PLOTS

What these plots revealed, for nearly all data sets, was very clear, unambiguous evidence that the acceleration was
not constant. In most cases there was an obvious downward trend with distance, so that the acceleration was slightly
greater at the top end (elevated end) of the ramp; this corresponded to shorter distances. In one case there was the
reverse situation, with the larger acceleration at the longer distances. In one other case there was no evident trend in
the accelerations; for this student group the accelerations appeared to be constant. 

NONCONSTANT-ACCELERATION DIFFERENTIAL EQUATION

To attempt to account for this nonconstant acceleration, it was assumed that there is a linear variation in acceleration
with distance down the ramp. This would lead to the following second-order ordinary differential equation (ODE):
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where a0 is the initial acceleration, that is, when the distance s of the ball down the ramp is zero, and k is a constant
rate of change of the acceleration with s. For the case where the acceleration appears to increase with s, we would
use  the  positive  sign  for  the  ks term.  It  is  understood  that  this  is  undoubtedly  too  simple  a  model,  and  the
acceleration would vary in a more complicated manner with  s.  But as is usual in engineering practice,  a linear
approximation can be an appropriate starting point for analysis.

DIFFERENTIAL EQUATION SOLUTION: A NEW MOTION MODEL

To obtain a unique solution for Eq(1), we need two initial conditions. These are the initial position s(0), which we
can always define to be zero, and the initial velocity of the ball, which is also zero. Using Laplace transforms to
develop the solution, we find the time-dependent position of the ball to be
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when the ks term in Eq(1) is negative, and
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when that term is positive. Needless to say, these look nothing like the usual kinematic equations that would apply if
the acceleration was constant. Graphing them, however, reveals that they do have the general shape of the datasets.
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MODEL WHEN ACCELERATION CHANGE IS SMALL

We would expect, if these new models for the motion are correct, that when the parameter  k is small we should
recover the usual kinematic equation for this situation, since if  k is  small Eq(1) reduces to the usual  constant-
acceleration ODE. To check this, consider that
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and similarly for Eq(3). This is, to say the least, not obvious. To see how this happens, expand the cosine and
hyperbolic cosine in a Taylor series, and then take the limit; all terms after the first contain k, and thus vanish.

NONLINEAR ESTIMATION OF PARAMETERS IN MODEL

At this point we appear to have two new models for the motion of the ball down the ramp. These will be of little use
unless  we can  estimate  the  parameters  a0 and  k,  using the  observed  data.  These  models  are  nonlinear,  in  the
statistical sense, and so this estimation requires specialized analytical tools. These models were implemented in the
computer data analysis program, and the results were excellent. 

The datasets that showed significant lack of fit using the simple kinematics model now can be “fitted” very well
using Eq(2), in most cases, and Eq(3) in a couple of other cases. The student dataset that did not show an apparent
change in the acceleration can either be estimated using Eq(2), in which case the parameter k will test to be zero, or
with the simple “Galileo” quadratic:
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As a further verification of the model Eq(1), a simulation was developed that can generate data corresponding to
Eq(2) or Eq(3), and this synthetic data does have the same characteristics as the observed datasets.

CONCLUSIONS

The conclusions of this analysis are as follows:

The acceleration is not constant for the apparatus used in this experiment. 

Since the acceleration is not constant then the ratio tests used in the analysis will usually fail, and we
will be unable to verify Galileo’s assertion about the relation between the time and distances.

A  linear  model  for  the  change  in  acceleration,  while  undoubtedly  oversimplified,  still  leads  to
estimation models, Eq(2) and Eq(3), that capture the structure in the datasets far better than does the
constant-acceleration model Eq(4). 

The nonconstant accelerations are most probably caused by a slight bending of the metal ramps; this
would cause a somewhat steeper angle at the top (raised) end, and a shallower angle at the lower end.
Then the acceleration would be a bit larger at the top end (shorter distances s), and decreasing as the
distance s increases. This situation would be reversed for the group that used the lower end of the ramp
as the endpoint for all time measurements, and this idea is consistent with their data.

The effects noted here are subtle, and would not be noticed without careful data analysis.
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