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NOTES ON CIRCULAR MOTION 
 
 
What is the difference between angular and linear v elocity? 

Given a circle, we can pick any point along the circumference as a starting point. Then, as an object 
moves along the circle we can measure its position as the angle (positive counterclockwise, usually) 
between its current position and that starting point. The rate at which this angle changes is the angular 
speed; if we consider that the rotation could be in either the positive or negative direction, then we can 
use the term angular velocity. Note that all points along a radial from the center to the circumference will 
have the same angular velocity. 
 
The linear velocity for circular motion is a bit more complicated. Clearly the object is not moving in a 
straight line, so how can there be a linear velocity? For this we need to consider the idea of "arc length" 
which for a circle is just the portion of the circle's circumference that is traversed by the object over some 
time interval. Then, using calculus, we can prove that the magnitude of the instantaneous linear velocity v 
at any time is 

v r ω=                                                                          (1) 

where ω is the angular velocity and r is the radius of the circle. We see from Eq(1) that the linear velocity 
increases with the radial distance r from the center of the circle, and we should remember that the 
direction of this vector quantity is tangent to the circle, in the same direction as the rotation. The key here 
is that the position angle, which we usually call θ, and its rate of change ω, must be measured in radians 
and radians per second.  
 
 
So, what is a radian? 

Measuring angles in degrees is arbitrary, from a mathematical point of view. We 
have 360 degrees, why not 100 or 1000 degrees in a circle? To eliminate this 
ambiguity a more robust measure of angle was developed. A radian is that 
angular measure such that the arc length of a circle subtended (cut off) by the 
angle is equal to the radius of the circle. This turns out to be about 57 degrees, 
and it can be proved that there are 2π radians in 360 degrees. Thus one 
complete rotation, or to be more fussy, "revolution" of the object around its 
circular path is 2π radians. 

 
What is uniform circular motion? 

When an object moves with a constant speed in a circle, this is called uniform circular motion. However, 
even if the linear speed is constant, the linear velocity of the object is continually changing. That velocity 
at any instant is tangent to the circle, so that the direction of this "tangential" velocity changes as the 
object moves around the circular path. Since velocity is a vector, this change in direction represents an 
acceleration, and we know that an acceleration must be caused by a force. 
 
 
What is "centripetal force"? 

If an object is moving on a path that is not a straight line, then there must be a component of acceleration 
that is perpendicular to the path, and thus there must be a force acting on the object that has a 
component perpendicular to the path. We call this force the "centripetal" force; the word means "to seek 
the center." Since the tendency of a moving object is to move in a straight line (inertia), a force must 
continually be applied that turns the object away from this straight line. A centripetal force must be caused 
by an identifiable agent, and this force causes the acceleration (change in direction) of the moving object. 
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Is "centripetal force" a new kind of force? 

No, this is just the name we use to describe whatever force is causing an object to move in a path around 
some central point, usually the center of a circle. For example, if we whirl an object on a string in a circle 
overhead, parallel to the ground, the string tension provides the centripetal force. A car going around a 
curve is deflected from its straight line path by the friction force of the tires on the road. Planets and 
satellites move in curved orbits due to the centripetal force supplied by gravity.  
 
 
Why do I feel a pull on the string when whirling an  object overhead? 

The centripetal force is directed inward, toward the center of the circle, which in this case is your hand, 
holding the string. If the force is directed toward your hand, why does it feel like the string is trying to pull 
away? Doesn't this mean that there is another force, a "centrifugal" (center-fleeing; think "fugitive") force 
that is pulling the object away? 
 
The pull that you feel is due to Newton's Third Law; action/reaction. You are applying a centripetal force 
that acts on the string, which in turn acts on the object, but there is a reaction force that the object applies 
to the string. This is the pull that you feel. But this is not a separate force, it is a reaction  force. 
 
To see this, consider what would happen if there was a separate centrifugal force acting on the object. 
Wouldn't it just cancel out the centripetal force, so that there would be no net force, and the object would 
just move in a straight line? Or think of it this way-- if you suddenly let go of the string while whirling the 
object, which way does it go? If you turn off the centripetal force, wouldn't the centrifugal force take over 
and accelerate the object off in a direction along the radial where it was when you released the string, 
since that's presumably the direction of action of the centrifugal force? 
 
But this doesn't happen-- the object will fly off in a direction tangent to the circle at the moment the string 
was released. The reaction force is turned off when the action (centripetal) force is turned off. Now no 
force acts on the object, so it moves in a straight line, according to Newton's First Law. 
 
 
Ok, but why do I feel like a force is pushing me in to the car door when going around a curve? 

Again, it's tempting to say "centrifugal force" pushes you into the door. But what is really happening is that 
your inertia wants you to keep going in a straight line, at every instant as you go around the curve. The 
car says, no, we want to go to the left, so it applies a centripetal force that pulls you away from the 
straight line you want to travel. This "battle" between your inertia and the car feels to you like a force 
pushing you to the right, into the door, but actually the door is pushing you to the left around the curve. 
This is an example of a "fictitious" force. It is an illusion caused by the fact that your coordinate system 
(the car) is accelerating. This is called a non-inertial reference frame. 
 
 
Can we calculate the centripetal force on an object  in uniform circular motion? 

If we consider the instantaneous (tangent) velocity vectors at two closely-spaced times, and do a bit of 
geometry, and then a bit of calculus, we can prove that the centripetal acceleration is 
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We use the subscript "radial" to indicate that this acceleration is directed along a radial line connecting the 
object at its current position to the center of the circle. For uniform circular motion this acceleration is 
constant. Be aware that, contrary to intuition, there does not need to be motion in the direction of an 
acceleration. To get the force we just use Newton's Second Law, and multiply by the mass of the object  
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The acceleration and force are of course vectors; in these equations we have used their magnitudes. The 
acceleration and centripetal force both are directed inward, toward the axis of rotation. 
 
 
Does the centripetal force do any work? 

Since the centripetal force is a radial force, it is by definition at right angles to the motion, at all times. 
Thus there is no component of this force applied along the direction of motion, so no work is done. If there 
was any tangential component of this force, it would do work, since it would cause an acceleration and 
change the speed and kinetic energy of the object. This would no longer be uniform (i.e., constant-
velocity) circular motion. 
 
 
What if I don't know the linear velocity? 

If we know the time T it takes for a complete revolution (or rotation), then we can use the simple relation 
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What is the "round room" and how is it related to c entripetal force? 

Mr. Evans used to enjoy a ride at Six Flags in Atlanta; the ride was also at Ocean City, long ago. This is a 
cylindrical "room" that spins around. You enter and stand along the wall, the room starts to spin, and gets 
going pretty fast. At Ocean City this was on a pier, and after a while of spinning, the floor drops out and 
you see the water down below. Cool. How did this work-- why don't the people fall into the water? 
 
It's tempting to say, as most people do, that "centrifugal force" keeps us from falling. But we know better, 
since there is no such thing as centrifugal force. What happens is the centripetal force creates a normal 
force from the wall on the backs of the people standing against the wall, so that 
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When the speed of the room is at least this value, no one will fall. Note that the mass (weight) of the 
people doesn't matter, but their coefficient of friction does. The friction force is directed upward, and this 
(we hope) cancels the weight force downward. 
 
 
How about the "ball-around-the-loop" demo we did in  class? 

 
For this we would like to calculate the initial height h needed to get 
the ball to go around the circular loop, of radius r. This will not be 
uniform circular motion, because the ball will decelerate as it goes 
up the loop, and accelerate as it comes back down. So the best 
way to approach this is to use conservation of energy.  
 
We know that the ball will have potential energy at the initial 
height, and since we release it from rest, this is all the available 

energy. As it comes down the ramp it has increasing kinetic energy, and then it enters the loop, with 
some velocity. The metal loop provides the centripetal force that causes the ball to move in a circular 
path, while gravity acts to affect the (instantaneous) velocity-- so, the ball slows down as it rises.  
 
The key is to see that at the top of the loop we must have a certain velocity to keep the ball on the track, 
and this critical velocity vc is found by equating the centripetal force to the gravitational force: 
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If the ball has at least this velocity at the top of the loop, it should go around. Now we need to find the 
initial height needed to attain this critical velocity; we use conservation of energy: 
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Here we have shown the vertical position y and the velocity both as functions of time, since they will vary 
as the ball moves. The critical position is at y = 2r, which is the top of the loop. Then 

 21
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2 cm g h m g r m v h r= + ⇒ =  

This says that the ball should be one-half the radius of the loop above the loop. Actually, this analysis 
ignores the rotational kinetic energy of the ball (it spins, rather than sliding), so the height turns out to be 
2.7r. Even this isn't complete, since there are other losses that haven't been considered. So if we place 
the ball at a height of about 3r, this should get the ball around the loop. 
 
 
What is a conical pendulum? 

 
If we start a pendulum moving in a circle, as indicated in this 
sketch, then we have a so-called conical pendulum (since the 
line L traces out a cone as it moves around). The forces acting 
on this pendulum are just gravity and the tension of the string. 
But, the tension in the string has a component directed toward 
the center of the circle (T sinθ), in addition to the component that 
balances the weight mg (Tcosθ). The central component provides 
the centripetal acceleration needed to keep the pendulum moving 
in a circle. It can be shown that the period of oscillation of the 
conical pendulum is 
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Interestingly, all the circular pendula in the sketch to the 
right have the same period, even though their lengths are 
different! The view is from the side; the lower dotted line is 
the plane in which the circular motion occurs. 
 
 
 
 
What about orbital motion: planets and satellites? 

That is a logical next step- to combine centripetal force with gravitational force. Explaining the motions of 
the planets was a primary motivator for Newton and his predecessors. We must mention the name 
"Kepler" since his amazing work was a strong foundation for Newton, in this area. The subject of orbital 
mechanics is complex, and requires some advanced mathematics. We won't have time this semester to 
pursue this interesting material. 
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