In the last episode of "Applications of Integrals - Disks"...

In each of the cases examined in the last class and on the homework, the area region was flush up against the axis of revolution, creating a bunch of "disks" (as shown above).

Let's start thinking about what would happen if we moved the axis of revolution so that the region was no longer against the axis of revolution....

Opener/Warm-Up

1a. Practice sketching the cylindrical "washer" shown below.

1b. Practice drawing the letter " C " which is half a "washer." [Sometimes it is easier to visualize just half of the washer as the diagram looks less cluttered.]

1c. Draw the axis of revolution as a dotted line in your sketches above. Also label the inner radius, R_{i}, and an outer radius, R_{o} on your sketches.

2. A solid is generated when revolving the region bound by the x -axis, the function $f(x)=5, y=2, x=3$, and $x=5$ around the x-axis.
a. On the grid on the left, sketch a perspective of drawing of this solid (or half of it using the above practice in \#1 as your guide.

Axis of Revolution $=x$-axis

b. Using geometry, find the volume of the washer you have drawn.

This is what it would look like if the z-axis was pointed upward instead of out of the page.
c. Write a generalized equation for the volume of a generic "skinny washer" using the diagram to the left.
6. Let \mathbf{R} be the region bounded by $f(x)=\sqrt{x}$ and $g(x)=\frac{1}{2} x$.

A solid is formed by rotating region \mathbf{R} about:
i. An axis of revolution of the \mathbf{x}-axis.
a. Sketch a single arbitrary rectangle in the region and its corresponding washer.
b. Write the integral that represents the volume of the solid formed by rotating R about the $\underline{x-a x i s}$

ii. An axis of revolution of $y=-1$
a. Sketch a single arbitrary rectangle in the region and its corresponding washer.
b. Write the integral that represents the volume of the solid formed by rotating R about $\mathrm{y}=-1$

Using the same region \mathbf{R} bounded by $f(x)=\sqrt{x}$ and $g(x)=\frac{1}{2} x$.

A solid is formed by rotating region R about:
iii. An axis of revolution of $y=3$
a. Sketch a single arbitrary rectangle in the region and its corresponding washer.
b. Write the integral that represents the volume of the solid formed by rotating R about $y=3$

$$
\begin{aligned}
& \int_{x=0}^{x=} \pi r_{0}^{2}-\pi r_{i}^{2} d x= \\
& \pi \int_{0}^{4}(\sqrt{x})^{2}-(1 / 2 x)^{2} d x \\
& =\frac{8}{3} \pi \\
& =\int_{0}^{0} \pi r_{0}^{2}-\pi r_{i}^{2} d x \\
& \\
& =\int_{0}^{4}(\sqrt{x}+1)^{2}-(1 / 2 x+1)^{2} d x \\
& \approx 16.755
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{4} \pi r_{0}^{2}-\pi r_{0}^{2} d x \\
& \pi \int_{0}^{4}(3-1 / 2 x)^{2}-(3-\sqrt{x})^{2} d x \\
& =16.755
\end{aligned}
$$

