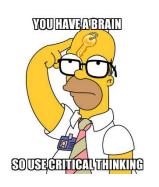


Der freie Fall - Untersuchung der Änderungsrate

Öffne die GeoGebra-Datei FreierFall.ggb.

- (1) Bestimme die Änderung der Höhe des Steins im Zeitintervall [1; 3]. $\Delta y =$
- (2) Die Durchschnittsgeschwindigkeit entspricht der Steilheit der durch die beiden Punkte im Weg-Zeit-Diagramm festgelegten Sekanten.

Formuliere zu Ende: "Die durchschnittliche Geschwindigkeit des Steins zwischen zwei Zeitpunkten kann berechnet werden, indem man



Messwerte	
Zeit in s	Höhe in m
0	45
0.5	43.8
1	40
1.5	33.8
2	25
2.5	13.8
2	0

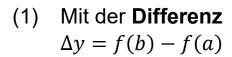
- (3) Berechne die Durchschnittsgeschwindigkeiten in den folgenden Zeitintervallen:
 - a) [1; 3], $\bar{v} =$
 - b) [2; 3], $\bar{v} =$
 - *c*) [2.5; 3], $\bar{v} =$

Beschreibe die **Auffälligkeiten** bei den Intervallen und den resultierenden Durchschnittsgeschwindigkeiten

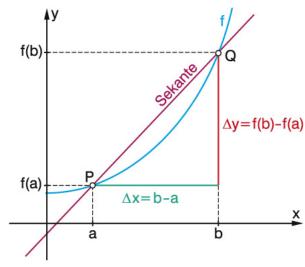
(Je..., desto...):

(4) Überprüfe durch Verschieben des Punktes P deine Ergebnisse in (3). Ermittle anschließend einen möglichst genauen Wert für die <u>Momentangeschwindigkeit</u> am Punkt G (Aufprallgeschwindigkeit).

$$1\frac{m}{s} = 3.6 \frac{km}{h}$$


Zusatzaufgaben (zur Auswahl)

- (Z1) Untersuche den Differenzenquotienten für den Fall "P=G". Warum lässt sich in diesem Fall kein sinnvoller Wert für die Aufprallgesechwindigkeit festlegen?
- (Z2) Begründe, warum eine Funktion durch die Messpunkte gelegt wurde.
- (Z3) Welcher geometrische Zusammenhang zwischen Sekante und Tangente besteht bei (3)?


EFm1

Änderungsverhalten einer Funktion

Man kann das Änderungsverhalten einer Funktion f auf einem Intervall [a; b] beschreiben:

Dies ist die der
Funktionswerte am und am
des Intervalls.

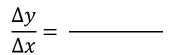
(2) Mit dem

Differenzenquotienten

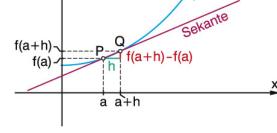
$$\frac{\Delta y}{\Delta x} = \frac{f(b) - f(a)}{b - a}$$

Dies ist die

der Funktion im


Intervall [a; b].

Das Änderungsverhalten einer Funktion an der Stelle a kann man näherungsweise bestimmen.


Der Differenzenquotient gibt die der durch $P(\ |\)$ der $Q(\ |\)$ an. Die Steigung ist die durchschnittliche Steigung des Graphen auf dem Intervall [].

Ermittlung eines Näherungswertes für die Änderungsrate an der Stelle a

Man berechnet die durchschnittliche Steigung auf dem Intervall [a; a + h].

Für *h* setzt man eine sehr kleine Zahl ein. Je man wählt, desto wird der Näherungswert an der Stelle

