RECTA DE REGRESIÓN SOBRE DATOS DE POBLACIÓN DEL INE

Estudiaremos la evolución de la población de Albacete con los datos del INE, y extrapolaremos resultados mediante una recta de regresión.

- 1. Abrimos la página del INE, <u>www.ine.es</u>.
- 2. En el menú de la izquierda, buscamos el apartado Demografía y Población (Cifras de población y censos demográficos)
- 3. En el Padrón, consultaremos las cifras oficiales de población de los municipios españoles. Información detallada → Detalle municipal.

0	EI INE	03 Métodos y proyectos)5 Prense	Censo electoral
02	2 INEbase	04 Permación y empleo	Productos y servicios	Sede electrónica
Cifra	is de pobla	ción y Censos de	mográficos	

De	mografía y población						
Padrón. Población por municipios							
	Operaciones estadísticas que el INE elabora de forma periódica	Últimos datos	Información detallada				
	Cifras oficiales de población de los municipios españoles: Revisión del Padrón Municipal	01/01/2017					
	Estadística del Dadrán continue	Datas					

Seleccionaremos únicamente Albacete, Población Total, y en orden ascendente. Es importante la forma de presentación de la Tabla, pues luego queremos tratar los datos con Geogebra.

	oonounui			
Municipios		Sexo	Periodo	
٩	≡ ≥ 2 ↓	S 🗧 🗐 🚖	↓ 🥄 📕 🗏 🕌	
02 Albacete	^	Total	. 1996 ^	
02001 Abengibre		Hombres	1997	
02002 Alatoz	_	Mujeres	1998	
02003 Albacete			2000	
02004 Albatana 02005 Alborea			2000	
02006 Alcadozo			2002	
02007 Alcalá del Júcar	\sim	\sim	2003 🗸 🗸	
Seleccionados: 1	Total: 88	Seleccionados: 1 Total:	3 Seleccionados: 22 Total: 22	
Sexo Periodo Decimales a mostrar	Por defecto			
	onorada c	n formato CSV r	ara evitar los proble	mas con las com

143.799 145.454

Repoblando el Futuro en las Tierras de Albacete Carmen Monzó

Seguidamente, abriremos Geogebra, con la vista Hoja de Cálculo. Situándonos en la casilla A1, importaremos los datos del archivo generado anteriormente y eliminaremos las filas innecesarias.

Seleccionando las columnas de la HC, crearemos la lista de puntos, que aparecerán en la vista gráfica, una vez hayamos modificado los ejes para una representación más adecuada.

Con la herramienta Recta Perpendicular, Ajuste Lineal, al seleccionar los puntos obtenemos la recta de regresión lineal.

Que, a su vez nos permitirá hacer estimaciones de población en el futuro.

Si nos situamos en la ventana de la Hoja de Cálculo podremos obtener todas las constantes del estudio en dos variables:

Repoblando el Futuro en las Tierras de Albacete Carmen Monzó

- 1. Seleccionamos las dos columnas de los datos a tratar (podemos eliminar el año 1997)
- 2. De la barra de herramientas, seleccionamos "Análisis de regresión en dos variables"

Archivo Edita Vista Opciones Herramientas Ventana Ayuda								
Vis H Análisis de una variable	a	Hoja de Cálculo						
		f_x	NC	EE(
Análisis de Regresión de dos variables			А	В				
	S DE POBLACIÓN EN	1	1996	143799				
Análisis Multivariable		2	1997					
		3	1998	145454				
Calculadora de probabilidad		4	1999	147527				
F = (2002, 152155)	996-2017	5	2000	149667				
G = (2003, 155142)		6	2001	149507				

3. Obtendremos una tabla con todos los cálculos estadísticos, de los que destacaremos el valor del Coeficiente de correlación o de Pearson (r) que nos ayudará a determinar el grado de relación de las dos variables (ambas cuantitativas y continuas):

		/		f_x	N C	EE
					Α	В
DATOS DE	ATOS DF					143799
DATOODL		5	Ċ	2	1997	
ALBACETE		3	\$	3	1998	145454
	[™] ξ ^{γγ} Σx ^{1 2 3} / _{4 5 6} ⊟ X 与 Y		모	4	1999	147527
1996-2017	Estadísticas 🗸	Diagrama de dispersión	• •	5	2000	149667
	MediaX 2007.5			6	2001	149507
	Sx 5.9161	Y: B3:B22		7	2002	152155
	r 0.9614			8	2003	155142
	Sxx 665	170000		9	2004	156466
	<u>Sγγ</u> <u>18742</u> Sxy 10733	•		10	2005	159518
	R ² 0.9243			11	2006	161508
	SSE - Suma errores cuadrados 14191	160000		12	2007	164771
				13	2008	166909
		150000		14	2009	169716
				15	2010	170475
		2000 2005 2010 2015	202	16	2011	171390
		X: A3:A22		17	2012	172472
	Modelo de Regresión			18	2013	172693
	$y = 1614 \ x - 3077$		19	2014	172487	
	Valor evecto (simbólico): y = v =				2015	172121
					2016	172426
				22	2017	172816

- 4. Podremos visualizar cuál es el modelo de regresión que mejor ajusta los datos.
- 5. Podremos **predecir la población** para un año concreto, por ejemplo 2019, escribiendo f(2019) en la barra de entrada.
- En los casos afectados por la despoblación, podremos predecir el año en que la población desaparecerá si la tendencia actual se mantiene, con el comando Raíz, referido a la recta de regresión, en la barra de entrada.
- 7. O bien, situando un punto genérico en la recta de regresión y observando su evolución con el paso de los años.