
(5)
x2 t( ) v0 λ1 x0−( ) t x0+  exp λ1 t( ):=

In this case the mass just returns to the equilibrium position, with no overshoot. The solution is

CASE II   Eigenvalues real, repeated, negative   CRITICAL DAMPING   no oscillation      ζ ζ ζ ζ = 1

(4)x1 t( )
v0 λ2 x0−( )
λ1 λ2−

exp λ1 t( )
v0 λ1 x0−

λ1 λ2−
exp λ2 t( )−:=

The solution in this case follows from Eq(2) when β is smaller than the square of α/2. In this case the 

damping "overwhelms" the restoring force and the mass does not oscillate; essentially, it just slows 

down and stops, and may not even return to the equilibrium position in a finite time. The solution can be 

shown to be, using the ICs for displacement x0 and velocity v0  

CASE I    Eigenvalues real, distinct, negative       OVERDAMPED         no oscillation       ζζζζ > 1

(3)
ζ

α

2 β
:=

We can have three situations or cases involving these eigenvalues. They can be real and distinct 

(different), and negative; they can be real and repeated and negative; or they can be complex conjugates 

with negative real parts. To begin, we define a useful quantity called the damping ratio

(2)λ2
α−

2

α

2







2

β−−:=λ1
α−

2

α

2







2

β−+:=

There are several ways to solve the free response portion; one useful method for our purposes is to 

assume an exponential response. This leads to important quantities called "eigenvalues," which here 

are given by 

UNFORCED RESPONSE

The solution to Eq(1) has two parts: (a) the unforced solution, aka the "free response" of the system to 

the initial conditions (IC), and (b) the response to the forcing function on the RHS. These solutions are 

linearly independent, so that the overall solution is just their sum (superposition).

where α is the damping factor and β is the restoring force proportionality factor (linear restoring force 

with displacement). The damping is NOT FRICTION and, unlike friction, is linearly proportional to the 

velocity.

(1)
2
t

x
d

d

2

α
t
x

d

d
+ β x+

F

m
cos γ t( )=

and, dividing by the mass we have

m
2
t

x
d

d

2





p
t
x

d

d









+ qx+ F cos γ t( )=

The differential equation for the generic displacement variable x is, from Newton's Second Law, with a 

linear velocity-dependent damping

DYNAMIC RESPONSE FOR DAMPED HARMONIC OSCILLATORS
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Here is a plot showing the three cases. The dotted line is Case III with no damping.

This is one way to write the solution, using a single trig function with a phase angle. The more 

basic solution is the sum of a sine and cosine term, but combining them is more convenient for 

analysis of the system.

x3 t( ) A exp
α−

2
t






cos ω t φ−( ):=

(6)

phase angleamplitudeangular frequency

A x0
2

v0 x0
α

2
+

ω











2

+:=
φ atan

v0 x0
α

2
+

ω x0











:=ω β
α

2







2

−:=

This is the most interesting case, since we have an exponentially-decreasing sinusoidal oscillation. 

This solution is a bit cumbersome, so we define some useful quantities first:

CASE III  Eigenvalues complex conjugates      UNDERDAMPING         oscillation             ζ ζ ζ ζ < 1

Note the product of time and the exponential; this is bounded since the exponential approaches zero 

faster than the linear increase of time. The two eigenvalues are exactly equal in this case.
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FORCED RESPONSE

We now have the predicted response of the system to its initial conditions. Next we need to develop a 

solution for the situation where the system is "driven" by some input, usually assumed to be a 

sinusoid. Again there are various methods for this; one way is to  assume a solution of the form

xF t( ) aF cos γ t( ) bF sin γ t( )+=

where γ is the angular frequency of the driving force, as in Eq(1). If we differentiate this twice and use 

those results in Eq(1), it is possible to solve for the coefficients aF and bF . Carrying this out we find

aF

F0 β γ
2

−( )

γ
2

β−( )2 α γ( )2+

:=
γ

bF

F0 α γ( )

γ
2

β−( )2 α γ( )2+

:=
γ

(7)

Here F0 is F / m. As we did for the unforced situation, it is again convenient to combine these into a 

single trig function, with an amplitude and phase angle. This results in

AF γ α,( )
F0

β γ
2

−( )2 γ
2
α
2

+

:= φF α β, γ,( ) atan
α γ

β γ
2

−









β γ
2

−( ) 0>if

atan
α γ

β γ
2

−









π+ β γ
2

−( ) 0<if

:=

xF t( ) AF cos γ t φF−( )= (8)

Note that the phase angle must be in the first or second quadrant (i.e., between 0 and π); thus the extra 

complexity is needed to get the ATAN function to return the correct angle. Below is a plot of the 

amplitude for several values of α for F0 = 1 and β = 1.3; the curve shifts to the left as α increases.
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ωR β
α
2

2
−=

The peak in the amplitude graph is attained when the driving frequency γ is the same as the resonant 

frequency of the system, which can be shown by differentiating the equation for AF to be 

(9)

This situation is called resonance, and is of great importance in the design of mechanical systems. 

We can see in Eq(9) that, if the damping is large enough, the resonant frequency becomes imaginary, 

and, in other words, there is no resonance. In many mechanical systems this is desirable. 

The maximum amplitude of the response at resonance is

Amax

F0

α β
α

2







2

−

:=
for small damping this is approximately Amax

F0

α β
:= (10)

Note that if there is zero damping the response at resonance is, in theory, infinite.

COMBINED RESPONSE

A simulation program has been developed that implements these calculations, and permits 

examination of the response as the parameters are adjusted. Below is a plot showing the kind of 

information available in the interactive program. The thick line is the overall, total response, while the 

dotted line is the unforced response, and the thin solid line is the forced response.   
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