Discrete Probability

Nanca Mra Wain

Probability

1. Discrete Random Variables:

- Conditional Probability
- Binomial Distribution

2. Continuous Random Variables:

- Probability Density Functions
- Normal Distribution

3. Sampling \& Estimation

Introduction to Probability \& Sample Space

- Probability assigns a numeric value to the likelihood of an event occurring.
- Probability is concerned with outcomes or results of trials in random experiments.
- A random experiment is one where:
- The possible number of outcomes is finite.
- All outcomes are equally likely.
- The results are uncertain.
- The probability that an event occurs is:

$$
\frac{\text { number of outcomes for that event }}{\text { total number of all possible outcomes }}
$$

- If an event is impossible, the probability that this event occurs $=0$.
- If an event is certain, the probability that this event occurs $=1$.
- So, the probability that any event occurs is between 0 and 1 inclusive.
- i.e. $0 \leq \operatorname{Pr}($ event $) \leq 1$
- $\operatorname{Pr}(A)=1-\operatorname{Pr}\left(A^{\prime}\right)$, where A^{\prime} is the compliment of A
- $\operatorname{Pr}(A \bigcup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \cap B)$ - the addition rule
- Mutually exclusive: $\operatorname{Pr}(A \cap B)=0$
- Independent: $\operatorname{Pr}(A \cap B)=\operatorname{Pr}(A) \times \operatorname{Pr}(B)$ or $\operatorname{Pr}(A \mid B)=\operatorname{Pr}(A)$
- A sample space shows all possible outcomes
- Common sample spaces are Venn diagrams, Tree diagrams and tables.

Example 1:

A family has three children. What is the probability that
(a) they are all boys?
(b) The $1^{\text {st }}$ is a boy and the $2^{\text {nd }}$ and the $3^{\text {rd }}$ are girls?
(c) There is one boy and two girls?
(d) They are not all boys?

Solution:

Sample Space:

(a) $\operatorname{Pr}(B$ and B and $B)=\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}=\frac{1}{8}$
(b) $\operatorname{Pr}(\mathrm{B}$ and G and G$)=\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}=\frac{1}{8}$ (specific order)
(c) $\operatorname{Pr}($ one boy only $)-$ order not specific $=\operatorname{Pr}(\mathrm{BGG})+\operatorname{Pr}(\mathrm{GBG})+\operatorname{Pr}(\mathrm{GGB})$

$$
=\left(\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}\right)+\left(\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}\right)+\left(\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}\right)=\frac{3}{8}
$$

(d) $\operatorname{Pr}($ That they are not all boys $)=1-\operatorname{Pr}($ all boys $)=1-\frac{1}{8}=\frac{7}{8}$

- So

$$
\begin{aligned}
& \text { "and" means X (multiply) } \\
& \circ \text { "or" means + (add) }
\end{aligned}
$$

Example 2.

A mathematics student calculates his chances of passing the next test according to the results on earlier tests. If he passed the last test he thinks his chances are 0.7 of passing the next test. If he failed the last test he estimates that the probability of passing the next test is 0.5 . Draw a probability tree diagram to illustrate the possible results obtained on the next two tests, given that he failed the previous test.

Find the probability that on the next two tests the student will:
(a) pass both;
(b) pass the first but not the second;
(c) fail the first and pass the second;
(d) fail both.

Solution:

(a) $\operatorname{Pr}(\mathrm{P}$ and P$)=0.5 \times 0.7=0.35$
(b) $\operatorname{Pr}(P$ and $F)=0.5 \times 0.3=0.15$
(c) $\operatorname{Pr}(\mathrm{F}$ and P$)=0.5 \times 0.5=0.25$
(d) $\operatorname{Pr}(F$ and $F)=0.5 \times 0.5=0.25$

Note : the sum of these four answers.

Example 3.

From an urn containing 7 blue and 3 red balls, 2 balls are taken at random
(i) with replacement and
(ii) without replacement

Find the probability that:
(a) both balls are blue;
(b) the first ball is red and the second is blue;
(c) one is red and the other is blue.

Solution: 7 Blue, 3 Red
(i) With Replacement
(a) $\operatorname{Pr}(B$ and $B)=\frac{7}{10} \times \frac{7}{10}=\frac{49}{100}$

(b) $\operatorname{Pr}(\mathrm{R}$ and B$)=\frac{3}{10} \times \frac{7}{10}=\frac{21}{100}$
(c) $\operatorname{Pr}(R$ and B or B and $R)=\frac{3}{10} \times \frac{7}{10}+\frac{7}{10} \times \frac{3}{10}=\frac{42}{100}=\frac{21}{50}$
(i) Without Replacement
(a) $\operatorname{Pr}(B$ and $B)=\frac{7}{10} \times \frac{6}{9}=\frac{42}{90}=\frac{7}{15}$
(b) $\operatorname{Pr}(R$ and $B)=\frac{3}{10} \times \frac{7}{9}=\frac{21}{90}=\frac{7}{30}$
(c) $\operatorname{Pr}(R$ and B or B and $R)=\frac{3}{10} \times \frac{7}{9}+\frac{7}{10} \times \frac{3}{9}=\frac{42}{90}=\frac{7}{15}$

Example 4: Simon visits the dentist every 6 months for a checkup. The probability that he will need his teeth cleaned is 0.35 , the probability that he will need a filling is 0.1 and the probability that he will need both is 0.05 .
a What is the probability that he will not need his teeth cleaned on a visit, but will need a filling?
b What is the probability that she will not need either of these treatments?
Solution:
Let $F=$ he will need a filling.
Let $C=$ he will need a clean.

	F	F^{\prime}	Total
C	0.05	0.30	0.35
C^{\prime}	0.05	0.60	0.65
Total	0.10	0.90	1

a $\quad \operatorname{Pr}\left(C^{\prime} \cap F\right)=0.05$
b $\quad \operatorname{Pr}\left(C^{\prime} \cap F^{\prime}\right)=0.60$

Example 5:

A marksman never misses the target, but he has a lousy aim and his arrows land anywhere on the target. The target comprises three concentric circles with radii $10 \mathrm{~cm}, 30 \mathrm{~cm}$, and 50 cm with score values of 4 points, 2 points and 1 point respectively.
(i) For any single shot what is the probability that the resulting score is:
(a) four?
(b) two?
(c) one?
(d) zero?
(ii) He fires three arrows (one after the other). What is the probability that the resulting score is:
(a) two?
(b) three?
(c) four?
(d) five?
(e) >3 ?

Solution:

Need the areas of each part of the target.
Area of Target $=\pi \times(50)^{2}=2500 \pi$
Area of " 4 " $=\pi \times(10)^{2}=100 \pi$
Area of " 2 " $=\pi \times(30)^{2}-\pi \times(10)^{2}=800 \pi$
Area of " 1 " $=\pi \times(50)^{2}-\pi \times(30)^{2}=1600 \pi$
Let $X=$ the score from a single shot
(i)
(a) $\operatorname{Pr}(X=4)=\frac{100 \pi}{2500 \pi}=\frac{1}{25}$
(b) $\operatorname{Pr}(X=2)=\frac{800 \pi}{2500 \pi}=\frac{8}{25}$
(c) $\operatorname{Pr}(X=1)=\frac{1600 \pi}{2500 \pi}=\frac{16}{25}$
(d) $\operatorname{Pr}(X=0)=0$ (he never misses)

Let $Y=$ the score from three shots
(ii)
(a) $\operatorname{Pr}(Y=2)=0$
(b) $\operatorname{Pr}(Y=3)=\operatorname{Pr}(1,1,1)=\frac{16}{25} \times \frac{16}{25} \times \frac{16}{25}=\frac{4096}{15625}$
(c) $\operatorname{Pr}(Y=4)=\operatorname{Pr}(2,1,1$ or $1,2,1$ or $1,1,2)=3 \times \frac{8}{25} \times \frac{16}{25} \times \frac{16}{25}=\frac{6144}{15625}$
(d) $\operatorname{Pr}(Y=5)=\operatorname{Pr}(1,2,2$ or $2,1,2$ or $2,2,1)=3 \times \frac{8}{25} \times \frac{8}{25} \times \frac{16}{25}=\frac{3072}{15625}$
(e) $\operatorname{Pr}(Y>3)=1-\operatorname{Pr}(Y \leq 3)=1-\frac{4096}{15625}=\frac{11529}{15625}$

- Sheet "A", Sheet "B"
- Sample Space - Ex 13A 1, 2, 3, 5, 6, 8, 10, 11, 12, 13, 15, 17

Sheet "A"

1. From a public opinion poll it was found that 2 out of 5 people wanted Sunday shopping. Out of three randomly selected people what is the probability that:
(a) all three wanted Sunday shopping;
(b) none wanted Sunday shopping;
(c) only the first and third wanted Sunday shopping;
(d) the first and second wanted Sunday shopping.
2. Person A is treated with drug X for his particular ailment. Person B with a different complaint is treated with drug Y and person C, with a different complaint again, is treated with drug Z. Drugs X, Y, Z have success rates of 7 in 10,8 in 9 and 1 in 4 respectively. Find the probability that:
(a) all three are cured;
(b) none are cured;
(c) only B is cured;
(d) both B and C are cured.
3. Box X contains 3 blue balls and 5 red balls. Box Y contains 4 blue balls and 6 red balls. One ball is randomly selected from each of the boxes X and Y. Find the probability that, of the 2 balls taken
(a) both are red;
(b) both are blue;
(c) neither are blue;
(d) only one is red having come from Box X ;
(e) only one is red having come from Box Y;
(f) only one ball is red.
4. Two dice, one white and one blue, are tossed. The white one is a fair die and the blue one is weighted such that the $\operatorname{Pr}(1)=\operatorname{Pr}(2)=0.2, \operatorname{Pr}(3)=0.3, \operatorname{Pr}(4)=\operatorname{Pr}(5)=\operatorname{Pr}(6)=0.1$. Find the probability that:
(a) a 6 turned up on both dice;
(b) an even number turned up on both dice;
(c) the white die showed an even number and the blue die an odd number;
(d) the white die showed an odd number and the blue die an even number;
(e) one die showed an odd number and the other die an even number.

Answers

1. (a) $\frac{8}{125}$
(b) $\frac{27}{125}$
(c) $\frac{12}{125}$
(d) $\frac{4}{25}$
2. (a) $\frac{7}{45}$
(b) $\frac{1}{40}$
(c) $\frac{1}{5}$
(d) $\frac{2}{9}$
3. (a) $\frac{3}{8}$
(b) $\frac{3}{20}$
(c) $\frac{3}{8}$
(d) $\frac{1}{4}$
(e) $\frac{9}{40}$
(f) $\frac{19}{40}$
4. (a) $\frac{1}{60}$
(b) $\frac{1}{5}$
(c) $\frac{3}{10}$
(d) $\frac{1}{5}$
(e) $\frac{1}{2}$

Sheet "B"

1. From a group of 5 students and 3 teachers, two people are selected at random. What is the probability that:
(a) no student is selected;
(b) no teachers are selected;
(c) the first person selected is a student and the second is a teacher;
(d) one person selected is a student and the other a teacher.
2. The probability that it rains tomorrow is $\frac{1}{4}$. If it rains tomorrow then the probability that it is fine the next day is $\frac{3}{5}$. Find the probability that:
(a) it rains tomorrow and is fine the next day;
(b) it rains both days.
3. Two identical boxes X and Y contain 10 balls. Box X contains 3 red and 7 black balls while Box Y contains 1 red and 9 black balls. A box is chosen at random and from that box a ball is selected at random. What is the probability that:
(a) Box X was chosen and the ball was red;
(b) Box Y was chosen and the ball was red;
(c) the ball was black and it came from Box X.

Answers

1. (a) $\frac{3}{28}$
(b) $\frac{5}{14}$
(c) $\frac{15}{56}$
(d) $\frac{15}{28}$
2. (a) $\frac{3}{20}$
(b) $\frac{1}{10}$
3. (a) $\frac{3}{20}$
(b) $\frac{1}{20}$
(c) $\frac{7}{20}$

Conditional Probability

"When you are given extra information about the outcome" (KEYWORD: GIVEN)

- For conditional probability $\operatorname{Pr}(A \mid B)$ - the probability that A occurs given that B has occurred.
- Rule: $\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)}$
- Two events A and B are independent if the occurrence of one event has no effect on the probability of the occurrence of the other.

$$
\begin{array}{ll}
- & \operatorname{Pr}(A \mid B)=\operatorname{Pr}(A) \\
\text { - } & \operatorname{Pr}(A \cap B)=\operatorname{Pr}(A) \times \operatorname{Pr}(B)
\end{array}
$$

- Two types of problems:

Type 1

Example 1: A die is thrown. Find the probability that a three turns up given that the number is odd.

Solution:

Let $\mathrm{A}=\mathrm{a}$ three is thrown
Let $\mathrm{B}=$ an odd is thrown

$$
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)}
$$

$$
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(3 \text { and odd })}{\operatorname{Pr}(\text { odd })}=\frac{\frac{1}{6}}{\frac{1}{2}}=\frac{1}{3}
$$

Example 2: From a pack of 52 playing cards, one is drawn. If it is a heart, what is the probability that it is the ace of hearts?

Let $A=$ ace of hearts drawn
Let $B=$ a heart is drawn

$$
\begin{aligned}
& \operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)} \\
& \operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(\text { ace of hearts and heart })}{\operatorname{Pr}(\text { heart })}=\frac{\frac{1}{52}}{\frac{1}{4}}=\frac{1}{13}
\end{aligned}
$$

TYPE 2

Example 3: In a certain VCE mathematics examination, 42% of the candidates were girls, and 90% of these girls passed in mathematics. The rest of the candidates were boys and 85% of these passed in mathematics.
(a) What was the overall percentage of candidates who passed in mathematics?
(b) A randomly selected mathematics paper was found to be the paper of a student who has passed in mathematics. What is the probability that this udent was a girl? - pass

Solution:

(a) \% passed

$$
\begin{aligned}
& =0.42 \times 0.9+0.58 \times .85 \\
& =0.871 \\
& =87.1 \%
\end{aligned}
$$

(b) Pr (Girl given that the student passed)

$$
\begin{aligned}
& =\frac{\operatorname{Pr}(\text { Girl } \cap \text { student passed })}{\operatorname{Pr}(\text { student passed })} \\
= & =\frac{0.42 \times 0.9}{0.871} \\
& =0.434
\end{aligned}
$$

Alternative approach: Karnaugh (or Two-way) Table.

	Girl	Boy	Total
Pass	0.378	0.493	0.871
Fail	0.042	0.087	0.129
Total	0.420	0.580	1.000

Example 4: There is only one bus service passing a man's house each morning. If the bus is on time then he arrives at work on time on average of 9 out 10 occasions. If the bus is late then he arrives at work on time on only an average of 4 out 10 times. The bus is late 20% of the time. Find the probability that the bus was late on a day he was late to work.

Solution:

Pr (Bus late knowing Man was late for work)
$=\frac{\operatorname{Pr}(\text { Bus late } \cap \text { Man late for work })}{\operatorname{Pr}(\text { Man late for } \text { work })}=\frac{0.2 \times 0.6}{(0.2 \times 0.6)+(0.8 \times 0.1)}=\frac{0.12}{0.20}=0.6$
or

		Bus		
		On time	Late	Total
Work	On time	0.72	0.08	0.80
	Late	0.08	0.12	0.20
	Total	0.80	0.20	1.000

Example 5: The probability that Monica remembers to do her homework is 0.7 , while the probability that Patrick remembers to do his homework is 0.4 . If these events are independent, then what is the probability that:
a both will do their homework
b Monica will do her homework but Patrick forgets?

Solution:

Let $M=$ Monica does her homework
Let $P=$ Patrick does his homework
a $\quad \begin{array}{rlr}\operatorname{Pr}(M \cap P) & =\operatorname{Pr}(M) \times \operatorname{Pr}(P) \quad \text { Independent } \\ & =0.7 \times 0.4 & \\ & =0.28 & \end{array}$
b $\quad \begin{array}{rlr}\operatorname{Pr}\left(M \cap P^{\prime}\right) & =\operatorname{Pr}(M) \times \operatorname{Pr}\left(P^{\prime}\right) \quad \text { Independent } \\ & =0.7 \times 0.6 & \\ & =0.42 & \end{array}$

- Ex 13 B $1,2,3,4,5,7,8,9,10,11,15,17,19$

Discrete Probability

- Discrete Random Variables (DRV) and Discrete Probability Distributions (DPD)
- A DRV is a variable.
- The value of a DRV is usually an integer and countable.
- Some examples and non-examples of DRV's
- If $X=$ the number of boys in a family, X is a DRV
- If $Y=2^{\text {nd }}$ innings score of a cricket match, Y is a DRV
- If $A=$ the height of a Year 12 student at RSC, A is not a DRV
- If $T=$ the time taken to get home, T is not a DRV.
- A DPD is a table with two columns (or rows) that shows all the possible values of a DRV with each of its respective possibilities.

Example 1:

Consider a family of three children.
(i) Use a probability tree to list all the possible families.
(ii) If the probability of a girl is $\frac{3}{5}$, find the probability of each of the possible families occurring.
(iii) Find the probability distribution of the discrete random variable, X, where X is "the number of boys in the family".
(iv) Using your answer to (iii) find:
a. $\operatorname{Pr}(X=2)$
b. $\operatorname{Pr}(X<3)$
c. $\operatorname{Pr}(X=2 \mid X \geq 1)$
d. $\left\{x: \operatorname{Pr}(X=x)=\frac{36}{125}\right\}$
e. $\left\{x: \operatorname{Pr}(X \leq x)=\frac{81}{125}\right\}$

Solution:

$$
\text { (ii) }\left\{\begin{array}{l}
\operatorname{Pr}(B B B)=\frac{2}{5} \times \frac{2}{5} \times \frac{2}{5}=\frac{8}{125} \\
\operatorname{Pr}(B B G)=\frac{2}{5} \times \frac{2}{5} \times \frac{3}{5}=\frac{12}{125} \\
\operatorname{Pr}(B G B)=\frac{2}{5} \times \frac{3}{5} \times \frac{2}{5}=\frac{12}{125} \\
\operatorname{Pr}(B G G)=\frac{2}{5} \times \frac{3}{5} \times \frac{3}{5}=\frac{18}{125} \\
\operatorname{Pr}(G B B)=\frac{3}{5} \times \frac{2}{5} \times \frac{2}{5}=\frac{12}{125} \\
\operatorname{Pr}(G B G)=\frac{3}{5} \times \frac{2}{5} \times \frac{3}{5}=\frac{18}{125} \\
\operatorname{Pr}(G G B)=\frac{3}{5} \times \frac{3}{5} \times \frac{2}{5}=\frac{18}{125} \\
\operatorname{Pr}(G G G)=\frac{3}{5} \times \frac{3}{5} \times \frac{3}{5}=\frac{27}{125}
\end{array}\right.
$$

(iii)

x	$\operatorname{Pr}(X=x)$
0	$\frac{27}{125}$
1	$\frac{54}{125}$
2	$\frac{36}{125}$
3	$\frac{8}{125}$

(iv) (a) $\operatorname{Pr}(X=2)=\frac{36}{125}$
(b) $\operatorname{Pr}(X<3)=\operatorname{Pr}(X=0$ or 1 or 2$)=\frac{27}{125}+\frac{54}{125}+\frac{36}{125}=\frac{117}{125}($ or $1-\operatorname{Pr}(X=3))$

$$
\operatorname{Pr}(X=2 \mid X \geq 1)
$$

(c) $=\frac{\operatorname{Pr}(X=2 \cap X \geq 1)}{\operatorname{Pr}(X \geq 1)}$

$$
=\frac{\operatorname{Pr}(X=2)}{\operatorname{Pr}(X \geq 1)}=\frac{\frac{36}{125}}{1-\frac{27}{125}}=\frac{\frac{36}{125}}{\frac{98}{125}}=\frac{36}{98}=\frac{18}{49}
$$

(d) $\operatorname{Pr}(X=x)=\frac{36}{125} \Rightarrow x=2$
(e) $\operatorname{Pr}(X \leq x)=\frac{81}{125} \Rightarrow x=1$

- Ex 13C 1, 2, 3,6, 7, 9
- Ex 13C 5, 10, 11, 12, 13, 17, 18

Expected Value, $\boldsymbol{E}(\boldsymbol{X})$

- The expected value, $E(X)$, is the same as the average, mean or μ.
- The general rule: $E(X)=\sum x \cdot \operatorname{Pr}(X=x)$
- "the expected value is equal to the sum of each value of X multiplied by its probability"
- Also: $E(f(x))=\sum f(x) \cdot \operatorname{Pr}(X=x)$

Properties of $\boldsymbol{E}(\boldsymbol{X})$

(i) $E(a X)=a E(X)$
(ii) $E(a X+b)=a E(X)+b$
(iii) $E(a)=a$
(iv) $E(X+Y)=E(X)+E(Y)$

Example: For the following probability distribution, find:

x	$\operatorname{Pr}(X=x)$
1	0.2
2	0.1
3	0.5
4	0.2

(a) $E(X)$
(d) Mode
(b) $E(X+2)$
(e) Median
(c) $E\left(X^{2}\right)$

Solution:

(a) $E(X)=\sum x \cdot \operatorname{Pr}(X=x)$

x	$\operatorname{Pr}(X=x)$	$x \cdot \operatorname{Pr}(X=x)$
1	0.2	0.2
2	0.1	0.2
3	0.5	1.5
4	0.2	0.8
	Total	2.7
	$=E(X)$	

(b) $E(X+2)=\sum(x+2) \cdot \operatorname{Pr}(X=x)$

x	$x+2$	$\operatorname{Pr}(X=x)$	$(x+2) \cdot \operatorname{Pr}(X=x)$
1	3	0.2	0.6
2	4	0.1	0.4
3	5	0.5	2.5
4	6	0.2	1.2
	Total	4.7	

(c) $E\left(X^{2}\right)=\sum\left(x^{2}\right) \cdot \operatorname{Pr}(X=x)$

x	x^{2}	$\operatorname{Pr}(X=x)$	$x^{2} \cdot \operatorname{Pr}(X=x)$
1	1	0.2	0.2
2	4	0.1	0.4
3	9	0.5	4.5
4	16	0.2	3.2

(d) Mode: $x=3$
(e) Median: $x=3$

- Ex13D 1, 2, 3, 4, 5, 7, 8, 9ab, 11ab(i)(ii), 12ab, 14ab, 15ab, 16a, 17a

The Variance, $\operatorname{Var}(X)$ of a $\operatorname{DRV}(X)$

- The variance measures the spread of a distribution.
$\operatorname{Var}(X)=E(X-\mu)^{2}$
- $=\sum(x-\mu)^{2} \cdot \operatorname{Pr}(X=x)$

$$
=E\left(X^{2}\right)-(E(X))^{2} \text { or } \sum x^{2} \cdot \operatorname{Pr}(X=x)-\mu^{2}
$$

- The standard deviation of $X, S D(X)=\sqrt{\operatorname{Var}(X)}$.
- Common Notation

Mean	$E(X)$	μ
Variance	$\operatorname{Var}(X)$	σ^{2}
Standard Deviation	$S D(X)$	σ

Example: Consider these two distributions:

x	$\operatorname{Pr}(X=x)$
2	0.3
3	0.5
4	0.2

y	$\operatorname{Pr}(Y=y)$
0	0.05
1	0.1
2	0.15
3	0.3
4	0.4

x	$\operatorname{Pr}(X=x)$	$x \cdot \operatorname{Pr}(X=x)$	x^{2}	$x^{2} \cdot \operatorname{Pr}(X=x)$
2	0.3	0.6	4	1.2
3	0.5	1.5	9	4.5
4	0.2	0.8	16	3.2
$E(X)=$			2.9	$E\left(X^{2}\right)=$

y	$\operatorname{Pr}(Y=y)$	$y \cdot \operatorname{Pr}(Y=y)$	y^{2}	$y^{2} \cdot \operatorname{Pr}(Y=y)$
0	0.05	0.0	0	0
1	0.1	0.1	1	0.1
2	0.15	0.30	4	0.6
3	0.3	0.9	9	2.7
4	0.4	1.6	16	6.4
	$E(Y)=2.9$	$E\left(Y^{2}\right)=$	9.8	

Both distributions have the same mean, $\mu_{X}=\mu_{Y}$, but the y-values have more spread.
$\operatorname{Var}(X)=E\left(X^{2}\right)-\mu^{2}$
$\operatorname{Var}(Y)=E\left(Y^{2}\right)-\mu^{2}$
$\sigma^{2}=8.9-(2.9)^{2}$
$\sigma^{2}=9.8-(2.9)^{2}$
$\sigma^{2}=0.49$
$\sigma^{2}=1.39$
$S D(X)=\sigma=\sqrt{0.49}=0.7$

$$
S D(Y)=\sigma=\sqrt{1.39}=1.18
$$

Example: A box contains three white and two red balls. The balls are taken out one at a time (and not replaced) until red ball is obtained.
(a) find the probability distribution for the number of balls chosen.
(b) How many draws do you expect until you get a red?
(c) Find the variance and standard variance.

Solution:

Let $X=$ the number of balls chosen.

x	Order of balls	$\operatorname{Pr}(X=x)$	$x \cdot \operatorname{Pr}(X=x)$	x^{2}	$x^{2} \cdot \operatorname{Pr}(X=x)$
1	R	$\frac{2}{5}$	$\frac{2}{5}$	1	$\frac{2}{5}$
2	WR	$\frac{3}{5} \times \frac{2}{4}=\frac{3}{10}$	$\frac{3}{5}$	4	$\frac{6}{5}$
3	WWR	$\frac{3}{5} \times \frac{2}{4} \times \frac{2}{3}=\frac{1}{5}$	$\frac{3}{5}$	9	$\frac{9}{5}$
4	WWWR	$\frac{3}{5} \times \frac{2}{4} \times \frac{1}{3} \times \frac{2}{2}=\frac{1}{10}$	$\frac{2}{5}$	16	$\frac{8}{5}$
$E(X)=$			2	$E\left(X^{2}\right)=$	5

(b) $E(X)=2$
(c) $\operatorname{Var}(X)=5-(2)^{2}=1$

$$
S D(X)=1
$$

- Useful property: $\operatorname{VAR}(a X+b)=a^{2} \operatorname{Var}(X)$
- Ex13D 9c, 11b(iii) 12c, 13, 14c, 15c, 16b, 17b

The relationship between the mean and the standard deviation. $(\mu \pm 2 \sigma)$

- For many probability distributions (but not all), about 95% of the distribution lies within two standard deviations of the mean.
- i.e. $\operatorname{Pr}(\mu-2 \sigma \leq X \leq \mu+2 \sigma) \approx 0.95$

Example: For the family of three children, used before, where the chance of the birth of a girl was $\frac{3}{5}$:

x	$\operatorname{Pr}(X=x)$	$x \cdot \operatorname{Pr}(X=x)$	x^{2}	$x^{2} \cdot \operatorname{Pr}(X=x)$
0	$\frac{27}{125}$	0	0	0
1	$\frac{54}{125}$	$\frac{54}{125}$	1	$\frac{54}{125}$
2	$\frac{36}{125}$	$\frac{72}{125}$	4	$\frac{144}{125}$
3	$\frac{8}{125}$	$\frac{24}{125}$	9	$\frac{72}{125}$
$E(X)=$				
	$\frac{150}{125}=1.2$	$E\left(X^{2}\right)=$	$\frac{270}{125}=2.16$	

$\operatorname{Var}(X)=E\left(X^{2}\right)-\mu^{2}$
$\sigma^{2}=2.16-(1.2)^{2}$
$\mu-2 \sigma=1.2-(2 \times 0.8485)=-0.497$
$\sigma^{2}=0.72$
$\mu+2 \sigma=1.2+(2 \times 0.8485)=2.897$
$\therefore \operatorname{Pr}(\mu-2 \sigma \leq X \leq \mu+2 \sigma)=\operatorname{Pr}(-0.497 \leq X \leq 2.897)$
$S D(X)=\sigma=\sqrt{0.72}=0.8485$

- the values of X (the number of boys) that lie between these two numbers are $0,1 \& 2$.
- $\operatorname{Pr}(\mu-2 \sigma \leq X \leq \mu+2 \sigma)=\operatorname{Pr}(0 \leq X \leq 2)=\frac{117}{125}=0.936$ or 93.6%
- Ex13D 14d, 15d, 16c, 17c, 18
- Review questions chapter 13

The Binomial Distribution - an example of Discrete Probability

The Binomial Theorem

Expansions of the form $(a+b)^{n}$
Consider: $(x+1)^{2}$
$(x+1)^{2}=(x+1)(x+1)=x^{2}+x+x+1=x^{2}+2 x+1$
Now:
$(x-1)^{2}=(x-1)(x-1)=x^{2}-x-x+1=x^{2}-2 x+1$

There is a pattern: the identity, $(a \pm b)^{2}=a^{2} \pm 2 a b+b^{2}$

There is an identity for $(a \pm b)^{3}=a^{3} \pm 3 a^{2} b+3 a b^{2} \pm b^{3}$

And there is for....
Interesting is that the co-efficients of the expansions belong to Pascal's Triangle:

PASCAL'S TRIANGLE

1
$1 \quad 1$
$1 \begin{array}{lll}1 & 2 & \binom{2}{0} \quad\binom{2}{1}\binom{2}{2}\end{array}$
1
$\binom{3}{0}\binom{3}{1} \quad\binom{3}{2} \quad\binom{3}{3}$
$\binom{4}{0}\binom{4}{1} \quad\binom{4}{2} \quad\binom{4}{3} \quad\binom{4}{4}$
Etc..

In general the Binomial Expansion is:
$(a+b)^{n}=\binom{n}{0} a^{n} b^{0}+\binom{n}{1} a^{n-1} b^{1}+\binom{n}{2} a^{n-2} b^{2}+\ldots .+\binom{n}{r} a^{n-r} b^{r}+\ldots \ldots+\binom{n}{n} a^{0} b^{n}$
Here we have the:
$1^{\text {st }} \operatorname{term}\binom{n}{0} a^{n} b^{0}, \quad 2^{\text {nd }} \operatorname{term}\binom{n}{1} a^{n-1} b^{1}, 3^{\text {rd }} \operatorname{term}\binom{n}{2} a^{n-2} b^{2}, \quad$ the general term $\binom{n}{r} a^{n-r} b^{r}$ and the last term. $\binom{n}{n} a^{0} b^{n}$.

Properties of combinations:

$\binom{n}{0}$ and $\binom{n}{n}=1$
$\binom{7}{1}=\binom{7}{6}$ and in general $\binom{n}{r}=\binom{n}{n-r}$
Example: Using the binomial expansion expand $(2 x-7)^{5}$.
Solution: $a=2 x, b=-7, n=5$

$$
\begin{aligned}
& (2 x-7)^{5}=\binom{5}{0}(2 x)^{5}(-7)^{0}+\binom{5}{1}(2 x)^{4}(-7)^{1}+\binom{5}{2}(2 x)^{3}(-7)^{2}+\binom{5}{3}(2 x)^{2}(-7)^{3}+\binom{5}{4}(2 x)^{1}(-7)^{4}+\binom{5}{5}(2 x)^{0}(-7)^{5} \\
& =\left(1 \times(2 x)^{5} \times 1\right)+\left(5 \times(2 x)^{4} \times(-7)^{1}\right)+\left(10 \times(2 x)^{3} \times(-7)^{2}\right)+\left(10 \times(2 x)^{2} \times(-7)^{3}\right)+\left(5 \times(2 x)^{1} \times(-7)^{4}\right)+\left(1 \times(2 x)^{0} \times(-7)^{5}\right) \\
& =32 x^{5}-560 x^{4}+3920 x^{3}-13720 x^{2}+24010 x-16807
\end{aligned}
$$

**There is always one more term than the power.
** For each term the sum of the indices add up to " n ".

The Binomial Probability Distribution

 CHARACTERISTICSIn a binomial experiment,

1. there are two possible outcomes for each trial.
'success' \rightarrow this is the 'desired' outcome
'failure' \rightarrow this outcome is 'not desired'.
2. the probability of a 'success' is the same for each trial.
i.e. the trials are independent.
\# Note: Trials of this type are called BERNOULLI trials. (pronounced Burnooey)
The FORMULA for the PROBABILITY of a BINOMIAL r.v.
$\operatorname{Pr}(X=x)=\binom{n}{x} p^{x}(1-p)^{n-x}$
where $\operatorname{Pr}(X=x)=\operatorname{Pr}$ (getting \underline{x} successes in \underline{n} trials)
and $p=\underline{\operatorname{Pr}(\text { Success })}$
NB. This formula takes into account all possible orders.

When do you use the Binomial Distribution?

When the situation has BOTH of the characteristics: $1 \& 2$
This usually involves:

* sampling with replacement OR
* sampling without replacement from a 'large' population OR
* no sampling at all: just observing

Notation:

The random variable X has a binomial distribution with n independent trials and $p=$ probability of a success, is written as:

$$
\begin{array}{ll}
& X \sim \operatorname{Bi}(n, p) \quad \text { or } \quad X \underline{\underline{d}} \operatorname{Bi}(n, p) \\
\text { e.g. } & X \sim B i(20,0.3)
\end{array}
$$

Example: A machine manufacturing calculators is known to have a defective rate of 1 in 10. Find the probability that in a sample of 6 calculators taken at random:
(a) exactly two are defective;
(b) no more than 2 are defective.

- 2 possible outcomes - defective or not defective.
- Let $X=$ the number of defective calculators.
- $X \sim B i\left(6, \frac{1}{10}\right)$
(a) $\operatorname{Pr}(X=2)=\binom{6}{2}\left(\frac{1}{10}\right)^{2}\left(\frac{9}{10}\right)^{4}=0.098415$
(b)
$\operatorname{Pr}(X \leq 2)=\operatorname{Pr}(X=0)+\operatorname{Pr}(X=1)+\operatorname{Pr}(X=2)=\binom{6}{0}\left(\frac{1}{10}\right)^{0}\left(\frac{9}{10}\right)^{6}+\binom{6}{1}\left(\frac{1}{10}\right)^{1}\left(\frac{9}{10}\right)^{5}+\binom{6}{2}\left(\frac{1}{10}\right)^{2}\left(\frac{9}{10}\right)^{4}=0.984$
- Ex 14A $1,3,4,6,7,10,11,12,13,14,16,18,19,20,21$

Using The Graphics Calculator

Example: A hitter has a probability of $\frac{1}{3}$ of getting a hit each time at bat, with each at-bat independent of other at-bat. In the next 5 times at-bat,
(a) What is the probability of getting exactly three hits?
(b) What is the probability of getting at least two hits?

The graph of the binomial probability distribution

Example: Find the probability distribution of the number of girls in a family of three children. Assume that the probability of a girl being born is 0.5 . Hence graph $\operatorname{Pr}(X=x)$ versus x, where $X=$ the number of girls in the family.

Solution:

$X \sim B i(3,0.5)$

$$
\operatorname{Pr}(X=x)=\binom{n}{x}\left(\frac{1}{2}\right)^{x}\left(\frac{1}{2}\right)^{n-x}
$$

x	$\operatorname{Pr}(X=x)$
0	0.125
1	0.375
2	0.375
3	0.125

Repeat for: all combinations of $\mathbf{n}=\mathbf{3 , 5 , 8}$ and $p=0.4,0.5,0.6$

	$n=3$	$n=5$	$n=8$
$p=0.5$			
$p=0.4$			
$p=0.6$			

- The effect of the parameters (variables) n and p on the shape of the graph:
- As the value of n increases, the peak of the graph shifts to the right. (i.e. the expected value (the mean) increases)
- When $p=0.5$, the curve is perfectly symmetrical.
- When $p<0.5$ the distribution is skewed to the right (or positively skewed) NOTE: Skewness refers to the tail.
- When $p>0.5$ the distribution is skewed to the left (negatively skewed).
- Ex 14B Q 1, 2, 3

Expectation and Variance of the Binomial Distribution

- The mean of a binomial distribution DRV can be found by:

$$
\mu=E(X)=\sum x \cdot \operatorname{Pr}(X=x)=n \cdot p
$$

- The variance of a binomial distribution DRV can be found by:

$$
\sigma^{2}=E\left(X^{2}\right)-\mu^{2}=n p(1-p)
$$

- The standard deviation : $S D(X)=\sigma=\sqrt{n p(1-p)}$.

Example: A binomial random variable has a mean of 3 and a variance of 2. find the parameters n and p.

Solution:

$X \sim B i(n, p)$
$\mu=n p \quad \Rightarrow n p=3$
$\sigma^{2}=n p(1-p) \quad \Rightarrow n p(1-p)=2$
$\therefore 3(1-p)=2$
$1-p=\frac{2}{3}$
$p=\frac{1}{3} \Rightarrow n=9$

Example: Give the 95% confidence limits for the number of girls in a family of eight children. Assume $\operatorname{Pr}($ girl $)=0.55$.

Solution:

Let $X=$ the number of girls in the family $X \sim B i(8,0.55)$

We know: $\operatorname{Pr}(\mu-2 \sigma \leq X \leq \mu+2 \sigma) \approx 0.95$
$\mu=8 \times 0.55=4.4$
$\sigma=\sqrt{8 \times 0.55 \times 0.44}=1.4071$
$\mu-2 \sigma=4.4-2(1.4071)=1.5858$
$\mu+2 \sigma=4.4+2(1.4071)=7.2142$
$\therefore \operatorname{Pr}(1.5858 \leq x \leq 7.2142)=\operatorname{Pr}(2 \leq x \leq 7)$

- Ex 14B 4, 5, 6, 7, 8, 9, 10

Binomial Distribution: Solving for ' \boldsymbol{n} '

Example:

A group of people meet for a fancy dress party. Each person comes dressed in something related to his or her zodiac sign. Assume that the probability of a person at the party having a particular zodiac sign is $\frac{1}{12}$.
(a) What is the least number of people who need to attend the party so that the probability that there will be at least one Scorpio is greater than 0.8 ?

Solution: Let $X=$ the number of Scorpios at the party

(b) What is the least number of people who need to be at the party so that the probability that there will be exactly 3 Scorpios is greater than 20% ?

Solution:

$n=26$
(CTRL-T)

Can't use invBinomN() command as it is not a Cumulative Probability.
(c) What is the least number of people who need to attend the party so that the probability of fewer than two Scorpios is closest to 0.8 ?

Solution:

Go to tableset put in number 0,1 then go to table and scroll down to the value that is closest to 0.8 .

OR

- Ex 14C Q 1, 2, 3, 4, 5, 6, 7 Chapter 14 Review

Past Exam Questions

2008 Exam 1

2008 Exam 2

Geetibon 5		
下isar		
A. $n=4, \quad p=0.3$		
B. $n=3, p=0.6$		
C. $n=2, \quad p=0.6$		
B $n=2$		$p \pi 0.4$
E. $n=3$		$p=0.4$
Qurician 5		
3 lave neve bee namind is		
A. 00035		
3. 0.0090		
D. 09994		
E. 0.9054		
Questica 14		
A 1		
B. 9		
C. 10		
B. 11		
E. 12		
Questien 15		
For utieds of be filloway pain of evests are the eveats independeof?		
A. $[1,2,3]$ and (1, 2]		
B. [1.2] mal [4 , 1		
C. $[1,3,5]$ and $(1,4,6)$		
D. $[1,2]$ mat $(1,3,4,6)$		
E. [1.2] and $\{2$ 4,6]		

Quevina 1
 mal.

 math He serestan
 a gal is a match me somantil
\qquad
$1+2=3$ marks

 of prohablity that her seet intempt at sooing a goal in fie math is roctostal in 0.64
Eier firit atteupt at seeviag a rasl in a mateck it rurcenfuil.
 the monim Nil be maccelal?
\qquad
 a poal in the math mill be macrement
 maxhl will be wental
\qquad

\qquad

2009 Exam 1

Questien 1

\qquad
\qquad
$\square \quad 1$ mank

\qquad
\qquad
\qquad
 is mabered 1?
\qquad
\qquad

Quention 7

The rasdene vwinble X has this prolablity distribution

X	0	1	2	3	4
$\operatorname{Pr}(X=x)$	0.1	0.2	0.4	0.2	0.1

Find

a. $\mathrm{Fr}(\mathrm{Cr}>1 \mid X \leq 3)$
\qquad
$V=(x)$ the vaiunce of x
\qquad
\qquad
\qquad
\qquad

2009 Exam 2

Quentime 10
The dexgete randocin vanisble \bar{Y} has a probshality ditritution as shoum.

s	0	1	2	3
$P(C r=3)$	0.4	0.2	0.3	0.1

The medme of X is

A. 0
B. 1
c. 1.1
D. 12

E 1

Questinn 13
 A fiur coin is tossed twelve times
 The probabitity (comect to for decimal plares) that at most 4 heads are obtained is
 A. 00730
 B. 0.1209
 C. 0.1938
 D. 0 S06?
 E. 0.9270

```
Qurotan 17
```



```
is Nquill Hath
```



```
A {1, 3,5,7,0,11] an土 (1, 4,7,10)
B {1, 3, 5, 7, , 11] and {2, 1,6,8,10,12)
C. {4,8, 12] mat (6, 12)
b. (5, 12} ma{{1. 12}
E. (2,4,6,8, 10, 12) and (5,2,7)
```

is equilly ith
ati ay the neab milgentere
2 $1,3,5,7,2,11)$ ant (1, 4, 7, 16)
C. $\{4,8,12)_{\mathrm{an}}(6,12)$
E. $(2,4,6,8,10,12)$ and $(5,2,7)$

2010 Exam 1

Quertion 8

The discrete raudom viridble, T has the problunility diverbutica

x	-1	0	1	2
$P(X=x)$	p^{2}	p^{2}	$\frac{p}{4}$	$\frac{4 p+1}{8}$

Find the value of P
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

2010 Exam 2

Question 15

X	0	1	z
$P \operatorname{Pr}(X-y)$	a	b	0.4

If the monan of X is 1 then
A. $a=0.3$ and $b=0.1$
B. $a=0.2 \mathrm{md} b=0.2$
C. $a=0.4$ and $b=0.2$
D. $a=01$ and $b=0.5$
E. $a=0.1 \mathrm{md} b=0$

Question 21
Events A and B we muthally exclosive everts of a sample space with
$\operatorname{Pr}(1)=p$ and $\operatorname{Pr}(B)=p$ where $0<p<1$ and $0<q<1$
Pr(4) $\left.{ }^{\prime} B^{\prime}\right)$ is equal to
A. $(1-p)(1-q)$
B. $1-p q$
C. $1-(p+q)$
D. $2-p-q$
E. $\quad 1-(p+q-p q)$

2010 Exam 2

Quevinan 2

Ol a partinday day, Mosuria miws thaty $=05$
Cehattay

\qquad

\qquad
 tanue al Saperies as 0.7
e i stow tart the value of p on thir day is eits
\qquad

 of Shadty 's utatues in Repular is 5 S.
 matil alynat

\qquad

2011 Exam 1

Quentinu?

a. Fial in wms of p, te probabisy of oftaining
i. fliee lendo fom at treer foose:
\qquad

Twe brath mat a mil bina the these turses
\qquad
\qquad
$1+1-2$ manb

\qquad
\qquad
\qquad

Quertion 8

If A^{\prime} 'Senstes the couplenest off. calciate $\mathrm{H}\left(\mathrm{A}^{\prime} \cap \mathrm{B}\right.$) when
a. $\mathrm{P}(A \cup B)=\frac{3}{4}$
\qquad
\qquad
\qquad
$\longrightarrow 2$ mads
h. 4 and 3 ave antualy exchninv.
\qquad
\qquad

1 mank

2011 Exam 2

Question 21
For two events, P and $Q, \operatorname{Pr}(P \cap Q)=\operatorname{Pr}\left(P^{\prime} \cap Q\right)$
P and Q will be independent events exactly when
A. $\operatorname{Pr}\left(P^{\prime}\right)=\operatorname{Pr}(Q)$
B. $\operatorname{Pr}\left(P \cap Q^{\prime}\right)=\operatorname{Pr}\left(P^{\prime} \cap Q\right)$
C. $\operatorname{Pr}(\operatorname{P} \cap Q)=\operatorname{Pr}(P)+\operatorname{Pr}(Q)$
D. $\operatorname{Pr}\left(P \cap Q^{\prime}\right)=\operatorname{Pr}(P \cap Q)$
E. $\quad \operatorname{Pr}(P)=\frac{1}{2}$

2012 Exam 1

Queitien 4

x	0	1	1	3
Fa(Tan)	0.2	0.2	0.5	0.1

- Feltheremory
\qquad
\qquad

\qquad
\qquad

\longrightarrow
\qquad
5 wabl

2012 Exam 2

```
Qantios 12
```



```
The puobablity the dbe will win noclly ame of her nomt two puasil
A. 0.33
B. 03
c. 0.42
D. 0.49
E. 082
Quention 13
```



```
A. \(\frac{6}{85}\)
B. \(\frac{15}{29}\)
C. \(\frac{14}{15}\)
b. \(\frac{29}{35}\)
E. \(\frac{2}{3}\)
```

[^0]Qursitea 3

 which onty our is comet
 at madem.

i. That in to pecbatality that Strev mill mwowe the fint tive quecticus of this vet croectly?
\qquad
 30 quetima of fian set cometly
\qquad
\qquad

incousctly is $\frac{2}{3}$

 \qquad
 \qquad
 \qquad
 \qquad
 fiuar decmal place.
 \qquad
 \qquad
 may net of 25
 If $\mathrm{P}(\mathrm{r}>23)=6 \mathrm{P}(\mathrm{r}-29)$, thow flue the vabe of $p+\frac{3}{6}$

\qquad
\qquad
\qquad
\square
\qquad
\qquad
\qquad
\qquad
\qquad

2013 Exam 1

Quesilime 7 (5 marks)

x	0	1	2	3	4
$P(X X-a)$	0.1	$0 \in p^{2}$	0.1	$1-7$	01

2. Surw that $p=\frac{2}{3} \pi p=1 \quad$ 3 movis
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b. Letp=
i. Cakulate E(X)
\qquad
\qquad
\qquad
\qquad
ii. Find Pr(xyEfu) 1 mark
\qquad
\qquad

2013 Exam 2

Questioas
When Xems traveln bo work, she either inves or take the bin
If de taber ase bus to work ime dey, the protability that dee takes the bus io work dee next ty it $\frac{7}{10}$ If sbe drive to work cae dey, the protability that she daves to work the next day is $\frac{3}{5}$
(Asvane flat Xeasa will alwayy travel bo work nevorifing to these ccuititimn othly)
What is 0m kong-term prolasinity dial Xoms wall take the tns to wouk?
A. $\frac{3}{4}$
B. $\frac{7}{10}$

C $\frac{4}{7}$
D. $\frac{6}{17}$
E. $\frac{3}{7}$

Question 9

Ham in s wocrat player who jrartion pmalty baks mam tuan wat doy
 prualty bok
Doe dry Ham tool 20 pecolh tick

a. 0.1189

C. 08
D. 06995

E 02017

Question 10
For events A and $B, \operatorname{Pr}\left(A \cap B^{\prime}\right)-p, \operatorname{Pr}\left(A^{\prime} \cap B^{\prime}\right)-p-\frac{1}{8}$ and $\operatorname{Pr}\left(A \cap B^{\prime}\right)=\frac{3 p}{5}$
If A and B are independent, then the value of p is
A. 0
B. $\frac{1}{4}$
C. $\frac{3}{8}$
D. $\frac{1}{2}$
E. $\frac{3}{5}$

Question 17
A and B are eveuts of a sample space
Griven that $\operatorname{Pr}(A \mid B)=p, \operatorname{Pr}(\bar{B})=p^{2}$ and $\operatorname{Pr}(A)=p t, \operatorname{Pr}(B, d)$ is equal to
A. p
B. p^{4}
C. p
D. $p^{\frac{2}{1}}$
E. p^{3}

Qantumin 2 (1) manka)
 comitio. At every one of Fidlyfits gum each wenter agrees to lave hus ce ber fithess asseved

 iii.

tea particule week, 20 menten of this pme attenges

Funthers wil scmeletes in iesithen fimal plares in

\qquad
\qquad
\qquad
\qquad

 in benten ther mimere

 of the nast Arre moentst

2014 Exam 1

Qumbinn 9 (5 mamk)

Sally zims to walk her dog. Mack mest wornims. If lif wenter is planant, the protelidity thet
Se will walk Mark a $\frac{3}{4}$, mad if the weabir is umpleasat Ae pectatality flat she will walk Mack
is $\frac{1}{3}$
Asume thet pletiat avilter on my momixp is wadependeit of pleavint weatier on iny cther ит
 Thendy mirame

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

 mumeng.

2014 Exam 2

Questioa it
A bag contum the red martles ma four bloe mutblen. Two marties are drame frou the bog, withoul replscmums, and the rewults are recoeiled
The probability that the sertber are different colous is
A. $\frac{20}{111}$
B. $\frac{3}{18}$
C. $\frac{4}{9}$
D. $\frac{40}{81}$
E. $\frac{5}{8}$

Question 14
If X is s nodoes vanable such fint $\operatorname{Pr}(x>5)$ wa and $\operatorname{Pr}(x>8)=\hat{\delta}$, then $\operatorname{Pr}(x<5 \mid X<8)$ is
A. $\frac{a}{b}$
B. $\frac{a-b}{1-b}$
C. $\frac{1-b}{1-a}$

D $\frac{a t}{1-b}$
E. $\frac{a-1}{b-1}$

Ouration 22
 other thros The peobability that sota luts the belluege wita a simple torow is $\frac{1}{4}$. The peobstality that

 inilhery aif leat caxe in
A. 11
B. 3227
$\begin{array}{ll}\text { B. } & 327 \\ \text { C } & 6485\end{array}$
C. 21
E. 192.13

2015 Exam 1

2015 Exam 2

Question 10
The bromial radom virubile, X, las $E(X)=3$ and $\operatorname{Vur}(X)=\frac{4}{3}$
$\operatorname{Pr}(x=1)$ is equal to
A. $\left(\frac{1}{3}\right)^{0}$
B. $\left(\frac{2}{3}\right)^{\prime}$

C $\frac{1}{3} \times\left(\frac{2}{3}\right)^{2}$
D. $6 \times \frac{1}{3} \cdot\left(\frac{2}{3}\right)^{3}$

E $6 \times \frac{2}{3}=\left(\frac{1}{3}\right)^{3}$

Onentian it

 1 tm

a $\frac{3}{1}$
a. $\frac{5}{14}$
c $\frac{3}{3}$
a $\frac{15}{16}$
2. $\frac{15}{16}$

Question 14

Consider the following divarete probability dustribution for the random vanable λ

x	1	2	3	4	5
$P(X=a)$	p	$2 p$	$3 p$	$4 p$	$5 p$

The mean of this distnbution is
A. 2
B. 3
C. $\frac{7}{2}$
D. $\frac{11}{3}$
E. 4

[^0]: Qurition 20
 whege:
 $\mathrm{P}(X>1)$ in स स
 A. $1-\beta+P^{2}$
 B. $1-\mathrm{p}^{2}$
 C. $p-F^{2}$
 $3-r^{2}$
 E. $(1-p)^{2}$

