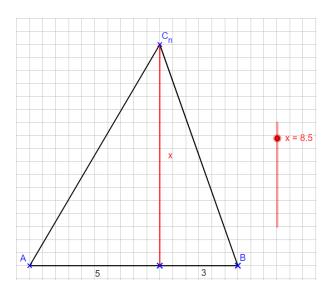

Link zum Buch: https://ggbm.at/g3zzqdbw

→ ab <u>Kapitel 1</u>

Aufgabe A 1

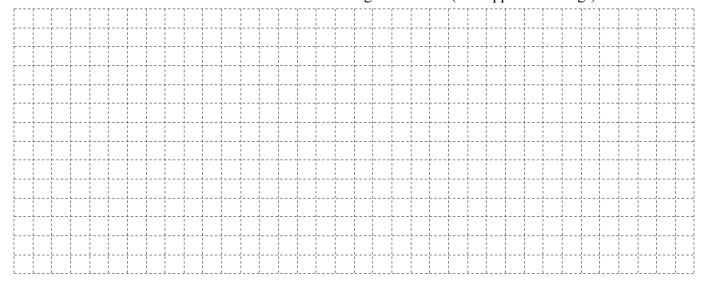

Welche der Dreiecke liegen so geschickt im Koordinatensystem, dass die Grundseite und die Höhe ohne Messung bestimmt werden kann? Begründe!

Dreiecke mit Variablen

Gegeben ist das Dreieck ABC_n wie in der Skizze rechts:

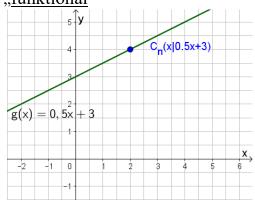
=> Grundseite:

g =____LE

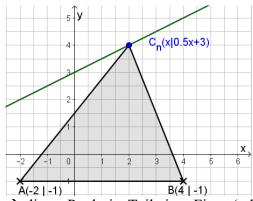

=> Die Höhe hat keine feste Länge, sondern ist variabel.

h =____LE

=> Die Variable x kann alle Werte zwischen und 10 annehmen.

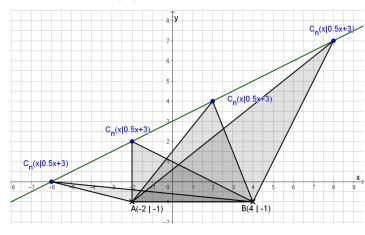

Aufgabe A2

- A 2.1 Für welche Werte von x lässt sich kein Dreieck zeichnen?
- A 2.2 Zeichne das Dreieck ABC_1 für x = 6.
- A 2.3 Berechne den Flächeninhalt A(x) für x = 6.
- A 2.4 Bestimme den Flächeninhalt in Abhängigkeit von x.
- A 2.5 Für welchen Wert von x entsteht ein rechtwinkliges Dreieck? (=> Tipp: Zeichnung!)



Funktionale Abhängigkeiten

• "funktional"



→ Punkt wandert auf einer Funktion (z.B. Gerade)

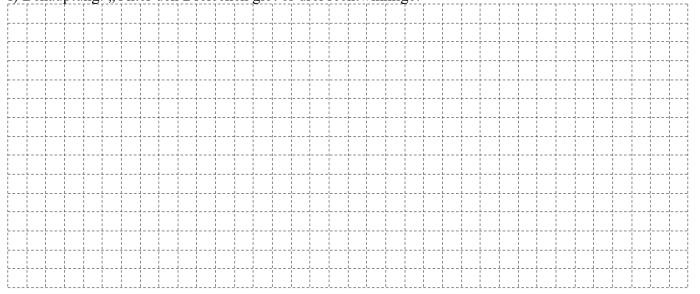
→ dieser Punkt ist Teil einer Figur (oder Strecke)

• "Abhängigkeit"

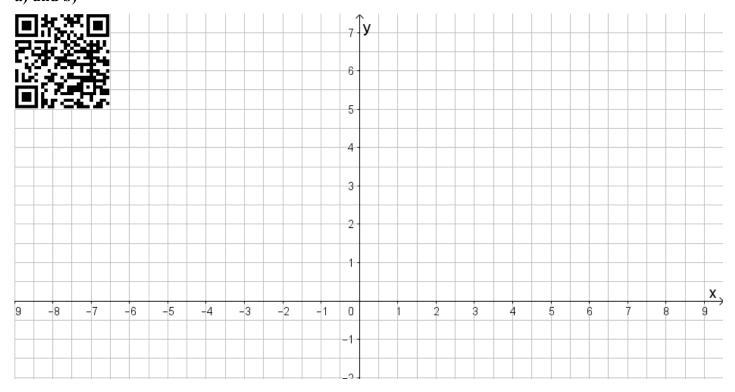
→ Die Lage des Punktes ändert den Flächeninhalt der Figur (oder die Länge der Strecke)

→ Der Flächeninhalt des Dreiecks ist abhängig von der Lage des Punktes.

Musteraufgabe:


Gegeben ist die Gerade g mit der Gleichung g: y = 0.5x + 3.

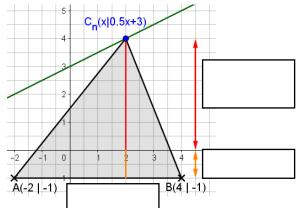
Der Punkt C_n wandert auf der Geraden g und besitzt die Koordinaten $C_n(x|0.5x+3)$.


Mit den festen Punkten A(-2|-1) und B(4|-1) und dem Punkt $C_n(x|0.5x+3)$ entstehen Dreiecke ABC_n .

- a) Zeichne die Punkte A, B und die Gerade g in ein Koordinatensystem.
- b) Zeichne das Dreieck ABC_1 für x = 2 und das Dreieck ABC_2 für x = 7.
- c) Berechne den Flächeninhalt A_1 und A_2 der beiden Dreiecke.
- d) Für welche Werte von x entstehen Dreiecke ABC_n ?
- e) Bestimme den Flächeninhalt A(x) der Dreiecke ABC_n in Abhängigkeit der Abszisse x der Punkte C_n .

f) Behauptung: "Unter den Dreiecken gibt es drei rechtwinklige!"

a) und b)


c) Berechne den Flächeninhalt A_1 und A_2 der beiden Dreiecke.

"_____

"

 $\rightarrow A_1 =$

 A_2 für x = 7 (Einzelarbeit)

 $\rightarrow A_2 =$

d) Für welche Werte von x entstehen Dreiecke ABC_n? In Partnerarbeit mit GGB-Buch

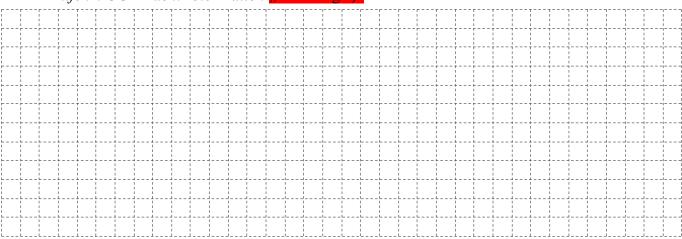
→ Ergebnis:

→ Geometrische Begründung:

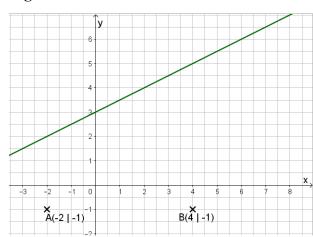
e) Bestimme den Flächeninhalt A(x) der Dreiecke ABC_n in Abhängigkeit der Abszisse x der Punkte C_n .

Vorüberlegungen:

• Die Grundseite g _____ für x-beliebige Werte! $\rightarrow g$ = ____ LE


• Die Höhe *h* für x-beliebige Werte!

Bestimme die Höhe h in Abhängigkeit von x:


Bestimme den Flächeninhalt A(x) der Dreiecke ABC_n in Abhängigkeit von x.

→ Hilfe im GGB-Buch: roter Button "Erklärung e)"

f) Behauptung: "Unter den Dreiecken gibt es drei rechtwinklige!"

→ Untersuchen mit Hilfe des GGB-Buchs und gefundene rechtwinklige Dreiecke einzeichnen.

Aufgabe:

Gegeben ist die Gerade g mit der Gleichung g: y = -0.6x + 4.

Der Punkt C_n wandert auf der Geraden g und besitzt die Koordinaten $C_n(x|-0.6x+4)$.

Mit den festen Punkten A(-3|-2) und B(4|-2) und dem Punkt $C_n(x|-0.6x+4)$ entstehen Dreiecke ABC_n .

- a) Zeichne die Punkte A, B und die Gerade g in ein Koordinatensystem.
- b) Zeichne das Dreieck ABC_1 für x = 0 und das Dreieck ABC_2 für x = 5.
- c) Berechne den Flächeninhalt A₁ und A₂ der beiden Dreiecke.
- d) Für welche Werte von x entstehen Dreiecke ABC_n ?
- e) Bestimme den Flächeninhalt A(x) der Dreiecke ABC_n in Abhängigkeit der Abszisse x der Punkte C_n .