1 Use the sliders to change the values of \boldsymbol{H} and \boldsymbol{K}. Observe the changes on the graph.

Make a sketch of one of your functions:
$f(x)=$

Where is the point $(\boldsymbol{H}, \boldsymbol{K})$?

2 Now adjust parameter \boldsymbol{A} while \boldsymbol{H} and \boldsymbol{K} stay the same. What do you observe?

Explain what happens to the graph as \boldsymbol{A} increases? As \boldsymbol{A} decreases?

How does the graph change if \boldsymbol{A} is negative?

3 Use the \boldsymbol{n} slider to change the exponent from 1 to 2.
Make a sketch of one of your functions.
$f(x)=$

Compare this graph to the graph when the exponent $=1$. How are they the same and different?

5
Experiment with different values for $\boldsymbol{A}, \boldsymbol{H}$, and \boldsymbol{K}. Notice the changes they cause for the graphs of $f(x)=\frac{a}{(x-h)^{1}}+k$ and $g(x)=\frac{a}{(x-h)^{2}}+k$. Explain what each parameter does to the graph:
A:

H:

K:

6
What do you think the graph of $h(x)=\frac{1}{(x-1)(x+1)}$ will look like compared with $j(x)=\frac{1}{(x-1)^{2}}$?
Go to www.geogebra.org/graphing and try different factors in the denominator. Describe your results.

