Ans 1 Let there be M men and W women and C be the children.

Ratio of total amount given to all men, all women, all children is 5:4:3

Let x be the common multiple.
Total amounts are $5 x, 4 x, 3 x$.
$\therefore$ The amount obtained by each man $=\frac{5 x}{M}$
$\therefore$ The amount obtained by each woman $=\frac{4 x}{W}$
$\therefore$ The amount obtained by each children $=\frac{3 x}{C}$
$\therefore \frac{5 x}{M}=\frac{4 x}{W}=\frac{3 X}{C}=3: 2: 1$
$\therefore \frac{5 x / M}{4 X / W}=\frac{3}{2}$
$\therefore \frac{4 x / W}{3 X / C}=\frac{2}{1}$
$\therefore \frac{5 x / M}{3 X / C}=\frac{3}{1}$
$\therefore \frac{5 W}{4 M}=\frac{3}{2}$
$\therefore \frac{4 C}{3 W}=\frac{2}{1}$
$\therefore \frac{5 C}{3 M}=\frac{3}{1}$
$\therefore 10 \mathrm{~W}=12 \mathrm{M}, 4 \mathrm{C}=6 \mathrm{~W}, 5 \mathrm{C}=9 \mathrm{M}$
$\therefore 5 W=6 M, 2 C=3 W, 5 C=9 M$
LCM of $6 \& 9$ is 18
$\therefore 15 \mathrm{~W}=18 \mathrm{M}, 18 \mathrm{M}=10 \mathrm{C}$
$\therefore \mathrm{w}=\frac{6}{5} M, \quad \frac{9}{5} \mathrm{M}=\mathrm{C}$
But $\mathrm{M}+\mathrm{W}+\mathrm{C}=60$
$\therefore M+\frac{6}{5} M+\frac{9}{5} M=60$
$\frac{20}{5} M=60$
$M=15$
There are 15 men.

## Ans 2 In $\triangle A B C$.

$A+b: b+c: c+a=7: 8: 9$
Let the common multiple be $x$
$\therefore \mathrm{a}+\mathrm{b}=7 \mathrm{x}$
$b+c=8 x$
$c+a=9 x$
$\therefore 2(a+b+c)=24 x$
$\therefore a+b+c=12 x$
$\therefore 7 x+c=12 x$
$\therefore c=5 x$

Similarly, $a=4 x, b=3 x$

$$
\begin{aligned}
\therefore a^{2} & +b^{2}=16 x^{2}+9 x^{2} \\
& =25 x^{2} \\
& =c^{2}
\end{aligned}
$$

By Pythagoras theorem $\triangle \mathrm{ABC}$ is the right angled triangle.

Ans 3


In fig. $D C=a, A B=b$
Diagonal AC $=d=a$

$$
\text { Height }=h=b
$$

In $\triangle$ ADM,
Let $\mathrm{DM}=\mathrm{CN}=\mathrm{x}$
$\therefore \mathrm{a}=(\mathrm{b}+2 \mathrm{x})$
In $\triangle$ AMC
$A C^{2}=A M^{2}+M C^{2}$
$d^{2}=h^{2}+(b+x)^{2}$
$a^{2}=b^{2}+(b+x)^{2}$
$(b+2 x)^{2}=b^{2}+b^{2}+2 b x+x^{2}$
$b^{2}+4 b x+4 x^{2}=2 b^{2}+2 b x+x^{2}$
$3 x^{2}+2 b x-b^{2}=0$
$3 x(x+b)-b(x+b)=0$
$(x+b)(3 x-b)=0$
$X=-b, 3 x=b$
$X=-b$ is impossible
$3 x=b$
$D C=x+3 x+x$
$=5 \mathrm{x}$
$A B=b=3 x$
Ratio $\frac{A B}{C D}=\frac{3}{5}$
i.e. 3:5

## Ans 4 Let a be the first term and $d$ be the common difference of first AP

Let a' be the first term and d' be the common difference of second AP

Given, $\frac{S n}{S m}=\frac{3 n+31}{5 n-3}$

$$
\begin{align*}
& \frac{\frac{n}{2}[2 a+(n-1) d}{\frac{n}{2}\left[2 a^{\prime}+(n-1) d^{\prime}\right.}=\frac{3 n+31}{5 n-3} \\
& \frac{[2 a+(n-1) d}{\left[2 a^{\prime}+(n-1) d^{\prime}\right.}=\frac{3 n+31}{5 n-3} \tag{1}
\end{align*}
$$

To find $\frac{a+9 d}{a^{\prime}+9 d^{\prime}}$ take $\mathrm{n}=19$ in eq.(1)
LHS $=\frac{2 a+18 d}{2 a^{\prime}+18 d \prime}$

$$
\text { RHS }=\frac{3 \times 19+31}{5 \times 19-3}
$$

$$
\begin{aligned}
=\frac{a+9 d}{a^{\prime}+9 d^{\prime}} & =\frac{57+31}{95-3} \\
& =\frac{88}{92} \\
& =\frac{22}{23}
\end{aligned}
$$

Ratio is 22:23

Ans 5 Let x be the capacity of vessel
27 lit water is removed and 27 lit milk is added.
Remaining water ( $\mathrm{x}-27$ )
Again 27 lit mixture is removed
Water in 27 lit mixture is, $\left(\frac{x-27}{x}\right) 27=\frac{27 x-729}{x}$
Remaining water $=(x-27)-\frac{x-729}{x}$

$$
\begin{aligned}
& =\frac{x(x-27)-27(x-27)}{x} \\
& =\frac{1}{x}\left(\mathrm{x}^{2}-54 \mathrm{x}+729\right) \\
& =\frac{1}{x}(\mathrm{x}-27)^{2}
\end{aligned}
$$

Milk in the mixture of 27 lit is $\frac{27}{x} \times \frac{27}{1}$
Remaining milk $=\frac{27}{1}-\frac{729}{x}$

$$
=\frac{27(x-27)}{x}
$$

Again 27 lit milk is added
Quantity of milk $=\frac{27(x-27)}{x}+\frac{27}{1}$

$$
\begin{aligned}
& =\frac{27 x-729+27 x}{x} \\
& =\frac{54 x-729}{x}
\end{aligned}
$$

Ratio of milk to water is,

$$
\begin{aligned}
& \frac{54 x-729}{x} / \frac{1}{x}(x-27)^{2}=\frac{9}{16} \\
& \frac{27(2 x-27)}{(x-27)(x-27)}=\frac{9}{16} \\
& \frac{3(2 x-27)}{(x-27)(x-27)}=\frac{1}{16}
\end{aligned}
$$

$$
(6 x-81) \times 16=(x-27)^{2}
$$

$$
96 x-1296=x^{2}-54 x+729
$$

$$
x^{2}-150 x+2025=0
$$

$$
(x-135)(x-15)=0
$$

$$
X=135 \text { or } x=15
$$

$$
\text { x should be greater than } 27
$$

$$
x=135 \mathrm{Lit} .
$$

## Ans 6 <br> Given ratio is,

$1 \frac{1}{4}: 1 \frac{1}{3}: \frac{7}{8}$
i.e $\frac{5}{4}: \frac{4}{3}: \frac{7}{8}$

LCM of 4,3and 8 is 24
i.e. 30 : 32:21

Sum is 83
Share of first child $=\frac{30}{83} \times 2324=840$
Share of second child $=\frac{22}{83} \times 2324=896$
Share of first child $=\frac{21}{83} \times 2324=588$

Ans 7 Let the first and the third part be $3 x$ and $5 x$
From the condition, Second part $=\frac{1}{4}$ of the third part

$$
=\frac{5 x}{4}
$$

$$
\begin{aligned}
& 3 x+\frac{5 x}{4}+5 x=370 \\
& \frac{72 x+5 x+20 x}{4}=370 \\
& \frac{37 x}{4}=370 \\
& X=40
\end{aligned}
$$

First part is 120.
Second part is 50 .
Third part is 200.

Ans 8

$$
\text { We note that } 8 \times 30=240 \text { and } 12 \times 20=240
$$

Thus $8 \times 30=12 \times 20$

$$
\frac{8}{12}=\frac{20}{30}
$$

$$
8: 12=20: 30
$$

Also $\quad \frac{8}{20}=\frac{12}{30}$

$$
8: 20=12: 30
$$

By invertendo and alternendo,
$\frac{12}{30}=\frac{8}{20}$
$12: 30=8: 20$
Thus proportions are,
$8: 12=20: 30,8: 20=12: 30,12: 8=30: 20,12: 30=8: 20$

Ans 9 Let the two numbers be x and y

Given, $(x+y):(x-y):(x y)=5: 1: 36$

$$
\frac{x+y}{x-y}=\frac{5}{1} \text { and } \frac{x-y}{x y}=\frac{1}{36}
$$

By componendo dividend

$$
\begin{aligned}
& \frac{2 x}{2 y}=\frac{6}{4} \\
& \frac{x}{y}=\frac{3}{2} \\
& \frac{\frac{3}{2} y-y}{\frac{3}{2} y \cdot y}=\frac{1}{36} \\
& \frac{\frac{1}{2} y}{\frac{3}{2} y \cdot y}=\frac{1}{36}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{3 y}=\frac{1}{36} \\
& \mathrm{y}=36 \\
& \mathrm{x}=\frac{3}{2} x 12 \\
& \mathrm{x}=18
\end{aligned}
$$

Therefore numbers are 18 and 12

Ans $10 \quad$ Given, $\frac{a}{b}=\frac{7}{8}$
Let $a=7 k$ and $b=8 k$
$\frac{\sqrt{ } a b}{a+b}=\frac{\sqrt{56 k^{2}}}{7 k+8 k}$
$=\frac{\sqrt{56} k}{15 k}$
Therefore the ratio is $\sqrt{56}: 15$

