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Most students of the physical sciences and engineering learn a method for the so-called “propagation of error” which
is based on a first-order Taylor series expansion. For years, and perhaps still today, the standard text for this material
was  Bevington [1],  so for  convenience  we will  refer  to  this  calculation  by  this  name.  The limitations  of  this
numerical, not statistical1, approach might be mentioned in passing, but are rarely demonstrated. 

The estimation of a confidence interval  for a ratio of two Normally-distributed random variables is a relatively
commonly-occurring  issue  in  scientific  data  analysis.  We  will  consider  the  proper calculation  of  confidence
intervals on a ratio, to provide a useful comparison with this approximate “propagation of error” method.

The Bevington calculation begins with a function
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where f need not be, and often is not, linear, and the x are random variables which in general need not be Normally-
distributed, and which in general may be mutually correlated. What we seek is the variance of z, which is defined as
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i.e., the expected value E[ ] of the second moment about the mean. The expected value is found using an integral, for
the continuous variables  we are  considering  here.  To evaluate  this  integral  we need a  functional  form for  the
probability density function (PDF) of z. It has been noted that 

The exact calculation of [variances] of nonlinear functions of variables that are subject to error is generally
a  problem of  great  mathematical  complexity.  In  fact,  a  substantial  portion  of  mathematical  statistics  is
concerned with the general problem of deriving the complete frequency distribution [PDF] of such functions,
from which the [variance] can then be derived. [2]

As is usual in applied mathematics, one approach for avoiding complexity is to approximate a function with another,
simpler, function, and often this is done using a low-order Taylor series expansion. It can be shown [3] that, if we
replace the function z with a first-order expansion about a point defined by the mean values of each of the variables
x, we can then write for the variance of the linearized function
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where the summations are taken over all combinations of  i, j and where it is understood that the covariance of a
variable with itself is its variance. The partials are functions of the several variables, each of which is to be evaluated
at its mean μ. Of course, to use (1) we must have values for the means and variances of the component variables x.
Note that if f is linear then, and only then, (1) is exact. To take a specific example of a function z, let us consider the
relatively simple, commonly-occurring case of

x
z

y
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with x and y possibly correlated. Then (1) becomes

1  It is very rare for a text in applied statistics, at any level, to even mention this “propagation of error.”
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and we also note for convenience that the correlation coefficient ρ is defined as

cov( )

x y

x y
 



It is often the case that the covariance term in (2) is ignored. This is unwise as a general policy, although there are
situations where there is a lack of information about the correlation, and so there may be no choice but to set ρ = 0.

We can make these observations about the application of (1) or (2):

Since the derivation used an approximation based on a derivative (Taylor  series),  the variation in  the
variables x must be “small,” such that they can be considered differentials in x. As a practical matter this
means that σx / x  (“coefficient of variation”) should be around 0.10 or less.

When this condition is not met, the linearization can fail, depending on where the evaluation point is on the
function. (The evaluation point is a particular set of values of the variables x.) We are attempting to replace
a (hyper-)surface in  n+1  dimensions with a tangent (hyper-)plane, and this clearly will not work as we
move farther away from the evaluation point, unless the function happens to be nearly linear in this region.
Of course, how well the plane represents the surface also depends on the nonlinearity of the function, and
where the evaluation point is, with regard to any discontinuities, etc. 

As a practical example to illustrate these issues, we now consider the problem of finding a confidence interval for a
ratio of two bivariate-Normal (BVN) random variables. That is, we will be interested not only in the variance, or, as
is more commonly quoted, the standard deviation (“sigma”) of the function z = x / y, but we also consider the issue
of what we are supposed to infer when we see a result like, e.g., z = 10.5 ± 3.2.
 
What does this statement tell us about  z? Presumably we would like to be able to say that there is some given
probability (often, 95%) that the true but unknown value of  z lies in, say, [ 4  16 ]. While this is not what the
confidence level of an interval really means, it is how these ranges are usually interpreted. In fact, the probability
does not apply to the parameter but to the interval. The true value of z is not random and it either is in [ 4  16 ] or it
is not. But if we repeated the experiment many times, and processed the data the same way, then, e.g., 95% of the
intervals we constructed would contain the true parameter value.

To illustrate this, consider Fig. 1. Here we have plotted 100 of 10000 replicates of a simulation experiment where
confidence intervals are constructed on the mean, with each replicate having a sample size of 100. Each replicate is
simulating an experiment where we observed data and calculated a confidence interval on a parameter (here, the
mean). The several intervals with a circle do not include the true population mean, and we would conclude, based on
those experiments, that the parameter value is not 100, when in fact it is 100. Out of the 10000 replicates, 9528 did
include the true population mean, so the “confidence level” was 0.953, which is in excellent agreement with the
desired level of 95% (two-sided).  That level was used to find the t-statistic, which in turn is used to create the
confidence intervals.

To find a confidence interval we must know the PDF of the variable in question, because we need to know the
probability content above or below the points we will be calculating. That is, the upper bound of the interval will be
set at that point on the abscissa where the integral of the PDF from that point to positive infinity yields a probability
content of, e.g., 0.025. A similar calculation is done for the lower bound.

Note that Bevington will not lead to a confidence interval unless Normality is assumed. Bevington only
produces an approximation for the variance, which may or may not be particularly close to correct, and it
says nothing about the PDF of the variable. These points, along with possible correlations among the x-
variables, are usually ignored.
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Figure 1. Simulated confidence intervals, N=100 per replicate, 100 replicates of 10000 are shown here;
9528 of the 10000 included the true mean. The intervals with the circles do not include the correct mean.

To explore the relation between the correct  calculation and the Bevington approximation, we now consider our
example function  z = x / y, with  x,  y distributed BVN. It has been shown recently (2002), with some relatively
advanced mathematics, that the PDF of z is given by [4]
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2 There is an error in the expression for θ(z)z) in the online document. It is corrected here. Also, the expression for k can of course be simplified but

   it is left in this form to facilitate comparison with the online document.
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It is assumed that we have the means and standard deviations for the numerator x and denominator y, and a value for
ρ.  This  PDF  calculation  was  implemented  in  MATLAB.  Note  that  the  function  F in  (3a)  is  a  confluent
hypergeometric function.3

To verify that the PDF (3) is correct, correlated data was generated. That is, many thousands of values for x and y
were sampled randomly from a BVN distribution, with an input correlation coefficient. This Monte Carlo technique
involves the use of the Cholesky decomposition of the BVN covariance matrix; an example of the correlated data is
shown in  Fig. 2, for a correlation coefficient of 0.8. 
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Figure 2. Scatter diagram of BVN data, 1000 points, correlation coefficient = 0.8

With these correlated  x, y pairs we can find thousands of  z values, which are then histogrammed to produce an
empirical PDF. The PDF from (3) is overlaid, and we can compare the results. To this plot is added a Normal PDF
using Bevington, (2), both with and without a term for the covariance.

In Fig 3 is a simulation case with 10000 trials where the numerator had a mean of 100 and a “sigma” (standard
deviation) of 10, while the denominator mean was 30 with a sigma of 5.48 (the square root of 30). The correlation
coefficient was 0.2. The solid line is (3), the dotted line is (2) with the covariance term, and the dashed line is (2)
without the covariance term.

We observe that the empirical PDF (histogram4) and (3) agree well, and that the PDF is skewed. This would lead to
an asymmetric confidence interval.  The Bevington approximations are in the general area of correctness,  but of
course  do not  show the skewness  of  the actual  data.  Next,  in  Fig.  4,  we have  a  case  with the same  x and  y
specifications, but a correlation of 0.8. We see that the PDF (3) and the histogram agree, and that the Bevington with
the covariance term is not too far off. However, without that term, (2) is a poor representation of this data.

To complete the analysis we would find a confidence interval for the ratio z. For the upper bound we would need to
integrate (3) and use a root-finder to determine the value of z at which the integral of (3) from z to infinity was equal
to half the Type I error rate (commonly denoted by α), and similarly for the lower bound. 

3 MATLAB did not have this function, and one was found online, in a library of advanced mathematical functions translated from FORTRAN.
4 To compare with a true PDF a histogram must be properly normalized. This requires a correction to each bin. MATLAB does not do this, and a
   corrected-histogram function was found online. (The area under a frequency histogram should be unity.)
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Figure 3.  Histogram of simulated BVN ratio data, with correct and approximate PDF’s.
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Figure 4. Simulated data and PDF’s, correlation coefficient = 0.8
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Figure 5 shows the cumulative probability distribution function, obtained by numerically integrating each of the
three PDFs in Fig. 4. The abscissas where these CDFs intersect the lines at probabilities of 0.025 and 0.975 provide
the lower and upper bounds for a confidence interval on the ratio  z. We observe that these intersections are quite
different, although in this particular example the measurement scale is such that the differences are not numerically
large. For the correct PDF (3) we see that a 95% interval on z is about [ 2.7  4.5 ], which is asymmetric about the
mean value of 3.333.
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Figure 5. Cumulative probability distribution functions for the PDFs in Fig. 4.

It should also be noted that when the denominator y of the ratio z becomes close to zero, either in the mean or by
virtue of its variation about that mean (i.e., a large “sigma”), the PDF becomes pathological, and, while (3) can still
describe it correctly, (2) cannot. In short, the uncertainty for a ratio needs very special attention, and the blind use of
(2), as so often happens, is simply not acceptable scientific practice.

Also, more generally, when there are complicated functions of several (possibly correlated) random variables, we
sometimes see what might be called “Bevington gone mad” with page after page of algebra purporting to find the
uncertainty in a derived quantity. These exercises almost always ignore the covariance. Further, even if this “sigma”
could be shown to be correct (simulation studies should always be done to verify this), we still do not know the PDF
of the derived quantity. 

So, how do we set a confidence interval? Apparently, we are just to assume that the derived quantity is Normally-
distributed, and take, e.g., twice the “sigma” to construct a 95% interval. This is poor science. The only statistically-
defensible, and practical, way to find the PDF and the corresponding confidence intervals on a derived quantity for
nontrivial,  nonlinear  functions  of  several  random variables  is  via  Monte  Carlo  simulation.  This  is  especially
important for “limits of detection” types of analysis, where we are interested in the percentage points at the upper
and lower tails of possibly highly-skewed PDFs. 
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