Colegio Marista "La Inmaculada" de Granada - Profesor Daniel Partal García - www.danipartal.net

Asignatura: Matemáticas I – 1ºBachillerato

Examen: Tema 2 Matemáticas I – Modelo 30 + Acumulado

página 1/2

Instrucciones:

a) Duración: 1 hora

- b) Tienes que **elegir** entre realizar únicamente los cuatro ejercicios de la **Opción A** o realizar únicamente los cuatro ejercicios de la **Opción B**. Indica, en la primera hoja donde resuelves el examen, la opción elegida.
- c) La puntuación de cada pregunta está indicada en la misma.
- **d)** Contesta de forma razonada y escribe a bolígrafo (no a lápiz) ordenadamente y con letra clara. Las faltas de ortografía, la mala presentación y no explicar adecuadamente las operaciones pueden restar hasta un máximo de 1 punto de la nota final.
- **e)** Se permitirá el uso de calculadoras que no sean programables, gráficas ni con capacidad para almacenar o transmitir datos. No obstante, todos los procesos conducentes a la obtención de resultados deben estar suficientemente justificados.

Opción A

Ejercicio 1.- [2,5 puntos] Resolver:

$$\frac{2}{x} - \frac{x}{x - 1} \le 4$$

Ejercicio 2.- [2,5 puntos] Una marca de vehículos ha vendido este mes coches de tres colores: blancos, negros y rojos. El 60% de los coches blancos más el 50% de los coches negros representan el 30% de los coches vendidos. El 20% de los coches blancos junto con el 60% de los coches negros y el 60% de los coches rojos representan la mitad de los coches vendidos. Se han vendido 100 coches negros más que blancos. Determina el número de coches vendidos de cada color.

Ejercicio 3.- a) [1,5 puntos] Sabiendo que $cosec(\alpha) = -3$ y que α es un ángulo del cuarto cuadrante, deduce sin utilizar la calculadora el resultado de $tg(\alpha)$. Si es necesario deja el resultado final como una única fracción simplificada (no usar números decimales).

b) [1 punto] Dibuja la gráfica de la función $f(x) = sen(x + \frac{\pi}{2})$ en el intervalo $[-2\pi, 3\pi]$. Indicar las coordenadas de los puntos de corte con los ejes, y las coordenadas de los máximos y de los mínimos. Recuerda que un punto de una gráfica tiene una componente horizontal y una componente vertical.

Ejercicio 4.- Obtener los puntos de corte de la función f(x) = tg(x) con la función g(x) = 2 en el intervalo $\left[\frac{-\pi}{2}, 2\pi\right]$. Recuerda que un punto de corte tiene una componente horizontal y una componente vertical.

Colegio Marista "La Inmaculada" de Granada - Profesor Daniel Partal García - www.danipartal.net

Asignatura: Matemáticas I – 1ºBachillerato

Examen: Tema 2 Matemáticas I – Modelo 30 + Acumulado

página 2/2

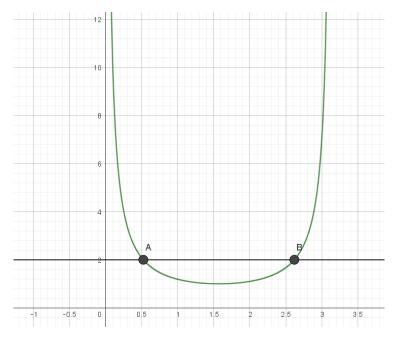
Opción B

Ejercicio 1.- [2,5 puntos] Dibuja la gráfica de la función:

$$f(x) = 10^x - 2$$

Además, calcula las coordenadas de los puntos de corte con los ejes de coordenadas. Recuerda que un punto de corte tiene una componente horizontal y una componente vertical.

Ejercicio 2.- [2,5 puntos] Una marca de vehículos ha vendido este mes coches de tres colores: blancos, negros y rojos. El 60% de los coches blancos más el 50% de los coches negros representan el 30% de los coches vendidos. El 20% de los coches blancos junto con el 60% de los coches negros y el 60% de los coches rojos representan la mitad de los coches vendidos. Se han vendido 100 coches negros más que blancos. Determina el número de coches vendidos de cada color.


Ejercicio 3.- a) [1 punto] Obtener todos los ángulos que cumplen $cos(x) = -\frac{1}{2}$.

b) [1,5 puntos] La siguiente imagen muestra las gráficas, en el intervalo $(0,\pi)$, de las funciones:

$$f(x) = \csc(x)$$

$$g(x) = 2$$

Obtener las coordenadas (x, y) de los puntos de corte entre ambas gráficas, señalados como A y B.

Ejercicio 4.- [2,5 puntos] Obtener los puntos de corte de la función f(x) = cos(x) con la función $g(x) = \frac{2}{5}$ en el intervalo $[\frac{-\pi}{2}, 2\pi]$. Recuerda que un punto de corte tiene una componente horizontal y una componente vertical.