TABLE OF CONTENTS

Brief guidelines page 2
Analytic guidelines page 4
Your challenge page 3

```
    \(\left|z_{1}\right|=3\)
\(\rightarrow\) input line: \(z \_1=3(\cos (\) theta \()+j \sin (\) theta \())\)
\(\rightarrow\)
```


\rightarrow Get the trace on for the point z_{1}
\rightarrow Move the slider
\rightarrow Verify your answer using: locus(\mathbf{z}_{1}, theta)
$\arg (z 1)=\pi / 3$
$\rightarrow \quad z _1=r(\cos (\pi / 3)+j \sin (\pi / 3))$
\rightarrow

(Increment 0.01)
\rightarrow get the trace on for the point z_{1}
\rightarrow Move the slider
\rightarrow Verify your answer using: locus($\mathbf{z}_{1}, \mathbf{r}$)

```
    \(3 \leq|z 1| \leq 5\)
\(\rightarrow z\) 1=r(cos(theta) \(+\mathrm{j} \sin (\) theta))
\(\rightarrow\)
```


\rightarrow

\rightarrow Input line: Loc1= locus(z_{1}, theta)
\rightarrow Get the trace on for the Loc1
\rightarrow Move the slider for r

Your challenge

Draw on Argand diagram the set of points \mathbf{z}_{1} for which
$\pi / 6 \leq \arg \left(z_{1}\right) \leq 5$ AND $3 \leq\left|z_{1}\right| \leq 5$

Analytic guidelines

Loci 1: Draw on Argand diagram the set of points z_{1} for which $\left|z_{1}\right|=3$

1.
```
Input: z_1=3*(cos(theta)+i inn(theta))
```

2.

Create Sliders

$\underset{\sim}{a=2}$ Create slider(s) for: theta

Create Sliders Cancel
3.

4.

Basic	Slider	Colour	Position
Algebra	Advanced	Scripting	
Interval	Max: π	Increment: 0.01	
Min:	$-\pi$		
Slider			

5.

6. moving the slider we get

7. to verify our findings

Locus[z_1, theta]

Loci 2: Draw on Argand diagram the set of points \mathbf{z}_{1} for which $\arg \left(\mathbf{z}_{1}\right)=\pi / 3$
1.
2.

3. right click on slider r

4.

5.

6. move slider r
your result:

7. to verify your findings

Locus[z_1,r] So the loci is half a line with initial point the axis origin.

Input: $z_{-} 1=r(\boldsymbol{\operatorname { c o s }}($ theta $)+i \boldsymbol{\operatorname { s i n }}($ theta $))$
2.

4.

5.

6. right click on slider r

7.

Basic Slider Colour Position Algebra Advanced Scripting
Interval
Min: 3 Max: 5 Increment: 0.1
8.

Locus[z_1, theta]

9.

10.

your result

This is called annulus and it's the a plane figure consisting of the area between the pair of concentric circles: one with radius 3 and another with radius 5 .

Loci 4: Draw on Argand diagram the set of points \mathbf{z}_{1} for which $\pi / 6 \leq \arg \left(\mathbf{z}_{1}\right) \leq \pi / 3$

1. Input: $z_{-} 1=r(\boldsymbol{\operatorname { c o s }}($ theta $)+i \boldsymbol{i} \boldsymbol{\operatorname { s i n }}($ theta $))$
2.

4.

5.

6. right click on slider r

7.
Basic Slider
Interval
Colour Position Algebra Advanced Scripting

Slider
8.

Locus[z_1, r]

9.

10.

your result

