PROPOSIÇÃO 7.24

Jefferson Peruzzo

Proposição 7.24

Seja $\mathcal{C}(e,R)$ o cilindro de eixo e e raio R. Se α é um plano que não é paralelo ou perpendicular a e, então a seção de \mathcal{C} por α é uma elipse.

Elipse

Uma elipse é um conjunto de pontos do plano cuja soma das distâncias a dois pontos fixos é constante e maior do que a distância entre eles. Os pontos fixos são os focos da elipse.

Demonstração

Se assume sem demonstração que $\alpha \cap \mathcal{C}$ é uma curva plana, simples, contínua e fechada. Sejam $\Sigma_1(O_1;R)$ e $\Sigma_2(O_2;R)$ duas esferas centradas em e e tangentes a α em F_1 e F_2 , respectivamente. Como α não é perpendicular a e, temos que $F_1 \neq F_2$. (Cf. Figura 1)

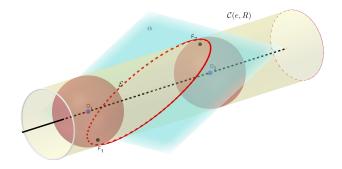


Figura: $\alpha \cap \mathcal{C}$

Afirmação

 F_1 e F_2 são focos e $\overline{O_1O_2}$ é o comprimento do eixo maior da elipse de interseção.

Seja P um ponto comum a α e a \mathcal{C} , e g a geratriz de \mathcal{C} que contém P. Temos que Σ_1 intersecta \mathcal{C} ao longo de um equador Γ_1 , com reta medial e, em um único ponto Q_1 e Σ_2 intersecta \mathcal{C} ao longo de um equador Γ_2 , com reta medial e, em um único ponto Q_2 . (Figura 2)

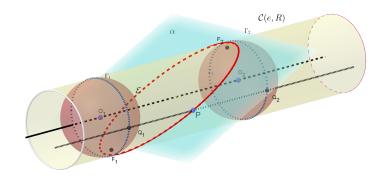


Figura: $P \in \mathcal{E} \cap g$

Temos, assim, que g tangencia Σ_1 em Q_1 e Σ_2 em Q_2 . Do item (a) do exemplo 22, temos que $\overline{PF_1} = \overline{PQ_1}$ e $\overline{PF_2} = \overline{PQ_2}$. Portanto,

$$\overline{PF_1} + \overline{PF_1} = \overline{PQ_1} + \overline{PQ_2} = \overline{Q_1Q_2} = \overline{O_1O_2}$$

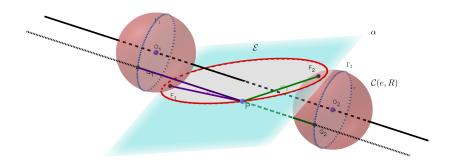


Figura: Distância entre F_1 e P e F_2 e P

Concluímos que a soma das distâncias PF_1 e PF_2 é constante. Assim, $\mathcal{E} = \alpha \cap \mathcal{C}$ é de fato uma elipse com focos F_1 e F_2 .

