
The position of the center of the ellipse is indicated by a square in the figure above. Note that φ is 
measured from this center, and sweeps from negative 90 degrees to positive 90 degrees.
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since sin(-z) = -sin(z) and cos(-z) = cos(z). Now we see that the argument is just some new parameter φ, 
so that we have the ellipse format, with center at ( 0, a / 2 ), and minor axis in the y-direction:

yV τ( ) a

2

a

2
sin τ

π
2

−







+=xV τ( ) a cos τ
π
2

−







=

and further, reversing the sign of the arguments (which must be the same) to get rid of the minus in y,
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But it is also the case that
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Using the parametric format first, we have from analytic geometry that an ellipse is defined by
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These parametric equations appear to be 
defining an ellipse, when θ ranges from zero to 
90 degrees. We can convert these expressions 
to a single y(x) function and examine that result 
to see if it is in fact an ellipse. First we use 
some trig identities to write
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If we examine the positions of the vertices (maxima) of a series of trajectories, all launched from a zero 
initial height, with the same initial velocity, an interesting pattern emerges. Consider the expressions for 
the vertex coordinates:
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This figure shows a few example trajectories along with the ellipse defined above. Clearly the vertices fall 
along this ellipse.
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Using the definition of a, above, then
which is, again, the equation of an 
ellipse, with center at (0,α/2) and 
minor axis 1/2 the major axis

as given in Thomas p876
complete square
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For the cartesian form, we return to Eq(1), solve for the trig functions and then square:
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