PROJECTILE MOTION Ellipse of maxima

If we examine the positions of the vertices (maxima) of a series of trajectories, all launched from a zero
initial height, with the same initial velocity, an interesting pattern emerges. Consider the expressions for
the vertex coordinates:
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These parametric equations appear to be
defining an ellipse, when 6 ranges from zero to
90 degrees. We can convert these expressions
to a single y(x) function and examine that result
47 to see if it is in fact an ellipse. First we use
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Using the parametric format first, we have from analytic geometry that an ellipse is defined by
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If we define a:= 2— and 1 =20 then xv(r) = asin(r) yv(r) = —?a cos(T) + g
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But it is also the case that
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since sin(-z) = -sin(z) and cos(-z) = cos(z). Now we see that the argument is just some new parameter ¢,
so that we have the ellipse format, with center at (0, a/ 2 ), and minor axis in the y-direction:
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The position of the center of the ellipse is indicated by a square in the figure above. Note that ¢ is
measured from this center, and sweeps from negative 90 degrees to positive 90 degrees.
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For the cartesian form, we return to Eq(1), solve for the trig functions and then square:
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complete square as given in Thomas p876
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This figure shows a few example trajectories along with the ellipse defined above. Clearly the vertices fall
along this ellipse.
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